
Noname manuscript No.
(will be inserted by the editor)

Adaptive Aggregation for Reinforcement Learning in
Average Reward Markov Decision Processes

Ronald Ortner

the date of receipt and acceptance should be inserted later

Abstract We present an algorithm which aggregates online when learning to be-
have optimally in an average reward Markov decision process. The algorithm is
based on the reinforcement learning algorithm UCRL and uses confidence inter-
vals for aggregating the state space. We derive bounds on the regret our algorithm
suffers with respect to an optimal policy. These bounds are only slightly worse
than the original bounds for UCRL.

1 Introduction

One big problem which makes reinforcement learning algorithms infeasible for
most practical applications is that typical algorithms are not efficient in environ-
ments with large state spaces. While many real world problems could in principle
be handled by representing them as Markov decision processes (MDPs), such rep-
resentations usually have a large state space, so that most reinforcement learning
algorithms are too costly, as their complexity and regret (the lost total reward with
respect to an optimal strategy) grows linearly or even polynomially with the num-
ber of states and actions. Unlike humans, reinforcement learning algorithms are
not able to make use of the environment’s structure, which prevents exploitation
of symmetries and similarities in a learning problem.

In this paper we pursue the idea of simplifying the complexity of a reinforce-
ment learning problem by employing adaptive aggregation while learning optimal
behavior in an MDP. We present a respective algorithm – an adaptation of an or-
dinary online reinforcement learning algorithm – and show that it is competitive
to the original version of the algorithm which does not use aggregation.

While there is a lot of literature concerning aggregation and similarity in
MDPs, most of this work considers the approximate dynamic programming view,
when the underlying MDP is known. Specific topics of this work include e.g. ap-
proximate value or policy iteration [26]. For an overview see e.g. [4,22,20].

INRIA Lille-Nord Europe, équipe SequeL, 40 avenue Halley, 59650 Villeneuve d’Ascq, France
E-mail: ronald.ortner@unileoben.ac.at

2 Ronald Ortner

There is also work on learning in MDPs with exploitation of an underlying
(similarity or other) structure. Thus, [17] considers a (discrete) state space which
is partitioned into sets of states of the same type, where states of the same type
are assumed to have the same transition dynamics. That way, less experience is
needed until good performance is achieved when compared to standard algorithms.
Also, reinforcement learning in factored MDPs has been considered in [28,19,9],
including sample complexity bounds for a variant of the R-Max algorithm [18].

The setting when the underlying symmetries of the MDP are not known be-
forehand as considered here, has been discussed in the literature only to a limited
extent. Thus, [21] considers an online clustering algorithm for discounted rein-
forcement learning with options. A heuristic algorithm for adaptive soft state ag-
gregation, where states may belong to several clusters (with some probability) is
suggested in [27]. A different kind of adaptive aggregation is considered in [3],
where states with similar progress in policy iteration are aggregated.

2 Setting

Definition 1 A Markov decision process (MDP) M is given by a (finite) state
space S, a finite action space A, an initial state s1 ∈ S, reward distributions with
support in [0, 1] and mean r(s, a), and transition probabilities p

`
s′|s, a

´
, which de-

termine the probability of a transition from state s to state s′ when action a is
chosen in state s.

A (stationary) policy π : S → A assigns an action to each state, and we are
interested in an optimal policy that maximizes the mean average reward

lim
T→∞

1
T

TX
t=1

E
ˆ
r
`
st, π(st)

´˜
,

where st denotes the state visited at step t. It is well known [24] that in commu-

nicating MDPs (i.e., MDPs with finite diameter, cf. below) the average reward is
maximized by a stationary policy. We measure the performance of an algorithm
learning to behave optimally by the regret it suffers with respect to the average
reward ρ∗ achievable by an optimal policy. More precisely, the regret after T steps

is given by

Tρ∗ −
TX

t=1

rt,

where rt is the reward collected by the algorithm at step t.

We will make use of the diameter as a parameter of the transition structure
of an MDP as introduced in [14]. The diameter D is the time it takes at most to
move from any state s to any other state s′, using an appropriate policy.

Definition 2 Given an MDP M , let T (s′|M, π, s) be the random variable for the
first time step in which state s′ is visited when starting in state s and choosing
actions in each state according to policy π. The diameter of M then is defined as

D(M) := max
s 6=s′∈S

min
π:S→A

E
ˆ
T (s′|M, π, s)

˜
.

Adaptive Aggregation for Reinforcement Learning in Average Reward MDPs 3

3 Aggregation

If there are certain symmetries present in an MDP M , it may be possible to ag-
gregate M , thus obtaining an MDP with smaller state space. First, let us consider
the following kind of structure. A partition {S1, . . . , Sn} of the state space may
serve as state space of such an aggregated MDP, if for all s, s′ in the same set
Si and for each a in A it holds that r(s, a) = r(s′, a), and for each Sj it holds
that

P
s′′∈Sj

p(s′′|s, a) =
P

s′′∈Sj
p(s′′|s′, a′). These values also are the mean re-

wards and transition probabilities in the aggregated MDP, respectively. That is,
if s ∈ Si, then one can set r(Si, a) := r(s, a) and p(Sj |Si, a) :=

P
s′′∈Sj

p(s′′|s, a).
In this case aggregation suits perfectly, and there is no loss when moving from the
original MDP to the aggregated MDP (cf. [23]).

Rather than such perfect aggregations we want to consider aggregations that
approximate the original MDP. Thus an aggregation with state space {S1, . . . , Sn}
(again a partition of the original state space) is called an ε-aggregation, if for all
s, s′ in the same set Si and for each a in A it holds that |r(s, a)− r(s′, a)| < ε, and
for each Sj it holds that

˛̨P
s′′∈Sj

p(s′′|s, a)−
P

s′′∈Sj
p(s′′|s′, a)

˛̨
< ε.

In the aggregated MDP, one has to specify the rewards and transition prob-
abilities. This can be e.g. done by taking the average over all states contained
in an aggregated state, so that r(Si, a) := 1

|Si|
P

s∈Si
r(s, a) and p(Sj |Si, a) :=

1
|Si|

P
s∈Si

P
s′′∈Sj

p(s′′|s, a). Alternatively, one may pick an arbitrary reference

state s in each Si and set (as for perfect aggregations) r(Si, a) := r(s, a) as well as
p(Sj |Si, a) :=

P
s′′∈Sj

p(s′′|s, a). Perfect as well as ε-aggregations can be found in

the literature under various names, see e.g. [12,10,11,23,25].

3.1 Aggregation of Bounded Parameter MDPs

Here we will consider an extension of Markov decision processes where for rewards
and transition probabilities not a single value but a range of values is specified.

Definition 3 A bounded parameter MDP (BPMDP) is defined by a state space S,
an action space A, an initial state s1 ∈ S, and ranges r̄(s, a) and p̄(·|s, a) for rewards
and transition probabilities, respectively. Thus the range r̄(s, a) of values for the
rewards for a given state-action pair s, a is defined by

r̄(s, a) :=
˘
r ∈ [0, 1] : |r̂(s, a)− r| ≤ dr(s, a)

¯
, (1)

while the range of transition probabilities p̄(·|s, a) is defined to be the set of all
transition probability distributions p(·) over S such that‚‚p̂(·|s, a)− p(·)

‚‚
1
≤ dp(s, a). (2)

Here, r̂(s, a) and p̂ (·|s, a) are given reference values and dr(s, a), dp(s, a) distance
values for rewards and transition probabilities, respectively.

Bounded parameter MDPs have been considered in similar form before, see
e.g. [13,32]. The reference values of a BPMDP can be interpreted as estimates,
where the range indicates an uncertainty about the estimates of the rewards and
transition probabilities. We will be interested in BPMDPs where the ranges are

4 Ronald Ortner

given by confidence intervals.
On the other hand, a BPMDP can be considered to be an MDP with continuous
action space when one is allowed to pick an arbitrary value from the ranges. In [14],
extended value iteration has been introduced in order to find an optimal policy on a
BPMDP. This has been employed by the UCRL algorithm also given in [14], which
uses extended value iteration in order to find an optimal policy on an optimistically
chosen MDP. The latter is obtained by choosing optimistic values (with respect
to the achievable average reward) in the ranges of a BPMDP given by confidence
intervals.

Now we are interested in aggregating BPMDPs. Given a BPMDP, we aggregate
states for which the ranges given by (1) and (2) intersect. Generally, one may want
to aggregate states whose ranges have nonempty intersection. However, finding
such aggregations is computationally hard (see Section 6 below and [10]), so that
we will rather aggregate states for which the union of ranges is connected.

Definition 4 Given a BPMDP M with reward ranges r̄(s, a) and transition prob-
ability ranges p̄(·|s, a), a partition of the state space {S1, . . . , Sn} constitutes an
aggregation of M if for all Sj it holds that

S
s∈Sj

r̄(s, a) as well as
S

s∈Sj
p̄(·|s, a)

are connected sets for all actions a.
If the intersection of ranges is nonempty, that is,

T
s∈Sj

r̄(s, a) 6= ∅ andT
s∈Sj

p̄(·|s, a) 6= ∅ for all Sj and all a, the partition obviously constitutes an
aggregation, which we call neat.

In the following we will refer to the elements of the partition of the state space
as aggregated states or meta-states. In most cases we will use variables Sj , S

′
j to

denote aggregated states from some particular partition of the state space which
constitutes an aggregation.

As for ε-aggregations for ordinary MDPs, we have to set the rewards and
transition probabilities in the aggregated BPMDP. That is, we have to define
respective ranges. While the union of the ranges of rewards again gives an interval,
this does not hold for a union of intersecting transition probability simplices as
given by (2). Thus, in order to define the range for the transition probabilities in
the aggregated BPMDP we will just take some simplex which contains the ranges
of the respective states aggregated. For this, we will need the following concept.

Definition 5 Let B = {Bi}n
i=1 be a family of at least two sets Bi ⊆ X, and assume

that
Sn

i=1 Bi is connected. Two sets Bj , Bk are said to be m-connectible if there
are (m− 2) pairwise disjoint sets B`1 , . . . , B`m−2 in B \ {Bj , Bk} such that

Bj ∩B`1 6= ∅,

B`i
∩B`i+1 6= ∅ for i = 1, . . . , m− 3,

B`m−2 ∩Bk 6= ∅.

If |B| = 1, we set B to be 1-connectible. Further, we say that B is m-connected if
m is the smallest number such that any two sets in B are m-connectible.

Then, given a BPMDP M with reward ranges r̄(s, a), transition probabil-
ity ranges p̄(·|s, a), distance values dr(s, a), dp(s, a) and an aggregation Sagg =
{S1, . . . , Sn} of M , we set the reward range r̄(Sj , a) for each aggregated state-
action pair Sj , a to be

r̄(Sj , a) :=
[

s∈Sj

r̄(s, a), (3)

Adaptive Aggregation for Reinforcement Learning in Average Reward MDPs 5

while the range for transition probabilities p̄(·|Sj , a) is defined to be the set of all
transition probability distributions p(·) over the set Sagg for whichX

S′j

˛̨
p(S′j |s0, a)− p(S′j)

˛̨
≤ c ·max

s∈Sj

dp(s, a), (4)

where s0 is an arbitrary fixed state in Sj , p(S′j |s0, a) :=
P

s∈S′j
p(s|s0, a), and

{p̄(·|s, a) : s ∈ Sj} is c-connected. If one considers p(·|s, a) as a transition probability
distribution over Sagg (by summing over the states contained in a meta-state as
in the formula for p(S′j |s0, a)), then one can rewrite (4) as‚‚p(·|s0, a)− p(·)

‚‚
1
≤ c ·max

s∈Sj

dp(s, a),

that is, the range of the transition probabilities is defined according to (2). In the
same fashion, it is straightforward to see that each transition probability distribu-
tion (considered again over Sagg) contained in a range p̄(·|s, a) with s ∈ Sj is also
contained in the range p̄(·|Sj , a), that is,

S
s∈Sj

p̄(·|s, a) ⊆ p̄(·|Sj , a).

Definition 6 An aggregation {S1, . . . , Sn} of a BPMDP has reward connectivity cr,
if cr is the smallest number such that {r̄(s, a) : s ∈ Sj} is at most cr-connected for
each Sj . Similarly, the transition connectivity is the smallest number cp such that
{p̄(·|s, a) : s ∈ Sj} is at most cp-connected for each Sj .

Note that the reward and transition connectivity of neat aggregations is cr =
cp = 2.

4 Online Aggregation

4.1 The Algorithm

Our algorithm UCAgg (shown as Algorithm 1) employs confidence intervals for
rewards and transition probabilities just like the algorithm UCRL introduced in
[14]. Similarly as the original UCRL algorithm our algorithm proceeds in episodes,
in which the same policy is employed. Also for UCAgg the idea is to implement
the optimism in the face of uncertainty maxim by assuming in each episode the
most promising values within the confidence intervals so that the average reward
is maximized. However, unlike UCRL, UCAgg tries to aggregate the BPMDP
given by the confidence intervals in order to reduce the size of the MDP. Only on
the aggregated BPMDP the original UCRL algorithm is executed.

Condition (7) in the algorithm guarantees that the lengths of confidence inter-
vals of states aggregated are comparable. Indeed, it is easy to give examples where
the lack of such a condition may lead to bad behavior of the algorithm. (The fol-
lowing example has been suggested by Peter Auer.) Thus, it may happen that two
states s−, s+ are aggregated, where the confidence intervals of s− are small and
the confidence intervals of s+ are large. If s− gives low reward while s+ gives high
reward, the aggregated state containing s−, s+ will look promising (given the high
reward and the large confidence intervals of s+). However, an algorithm visiting

6 Ronald Ortner

Algorithm 1 The UCAgg algorithm

Input: A confidence parameter δ ∈ (0, 1), S and A.
Initialization: Set t := 1, and observe the initial state s1.
for episodes k = 1, 2, . . . do

Initialize episode k:
1. Set the start time of episode k, tk := t.
2. For s, s′ ∈ S and a ∈ A let Nk (s, a) be the state-action counts prior to episode k, and

vk(s, a) the state-action counts in episode k. Further, set S := |S|, A := A, and let
Rk (s, a) be the observed accumulated rewards before episode k, and Pk (s, a, s′) the
number of times a transition from s to s′ has been observed after choosing action a
in s before episode k. Compute estimates

r̂k (s, a) :=
Rk(s, a)

max{1, Nk(s, a)}
, p̂k

`
s′|s, a

´
:=

Pk(s, a, s′)

max{1, Nk(s, a)}
.

Further, for each estimate define confidence intervals as follows: Let

confr(s, a) :=

rc ∈ [0, 1] :

˛̨
rc − r̂k

`
s, a

´ ˛̨
≤

r
7 log(2SAtk/δ)

2 max{1,Nk(s,a)}

ff
(5)

and set confp(s, a) to be the set of all transition probability distributions pc(·) with

‚‚‚pc(·)− p̂k

`
·|s, a

´ ‚‚‚
1
≤

r
14S log(2Atk/δ)
max{1,Nk(s,a)} . (6)

Aggregate and compute policy π̃agg
k :

3. Calculate an aggregation of the BPMDP with ranges as given by (5) and (6) such
that for two states s, s′ in the same aggregated state:

1
2
≤ |Nk(s, a)|/|Nk(s′, a)| ≤ 2, (7)

4. Use extended value iteration as given in [14] on the aggregated BPMDP to find a

1/
√

tk-optimal policy π̃agg
k and an optimistic MDP M̃agg

k .

Execute policy π̃agg
k on aggregated MDP:

5. while vk(st, π̃
agg
k (St)) < max{1, Nk(st, π̃

agg
k (St))} do

(a) Choose action at = π̃agg
k (St), where St is the aggregated state which contains st,

obtain reward rt, and observe next state st+1.
(b) Set t := t + 1.

end while
end for

the respective aggregated state may only visit s−. This will not reduce the confi-
dence intervals of s+, and the algorithm will keep playing the suboptimal policy
visiting s− instead of s+.

Condition (7) also levels the amount of exploration in similar states: If two sets
of states have similar rewards and transition probabilities, yet states in one set have
been sampled significantly more often than states in the other set, the latter set
will be more interesting due to the larger confidence intervals. Consequently, states
in this set are likely to be sampled more often, so that the amount of exploration
will be leveled over the two sets.

The algorithm UCAgg leaves open how to aggregate. For this, we propose a
simple algorithm in Section 6 below.

Adaptive Aggregation for Reinforcement Learning in Average Reward MDPs 7

4.2 A Regret Bound for Online Aggregation

Theorem 1 Given an MDP with S states, A actions and diameter D, with probability

of at least 1 − δ it holds that for any initial state s1 ∈ S and any T > 1, the regret

of UCAgg using an aggregation algorithm which guarantees reward and transition

connectivity of at most C is bounded by

49 · CDS
q

AT log
`

T
δ

´
.

Compared to the regret bound for the UCRL algorithm, the cost of aggregation
is basically the additional factor C, that is, the additional regret depends on the
quality of the used aggregation algorithm. In particular, if the aggregation algo-
rithm always produces a neat aggregation, the bounds for the regret are essentially
the same as for the original UCRL algorithm.

Note that the theorem does not contain any assumptions about the underlying
MDP. In particular, it is not necessary that the MDP has some structure that
favors aggregation. Indeed, the algorithm may be conducted also on other MDPs
with some benefit in computation time, as extended value iteration is conducted
on an MDP which will have a smaller state space especially in the first episodes
when the confidence intervals are large.

5 Proof of Theorem 1

5.1 Preliminaries

Let M be the true underlying MDP with state space S, action space A, re-
wards r(s, a) and transition probability distributions p(·|s, a). Further, for a given
episode k consider the BPMDP determined by the ranges specified in (5) and (6).
Alternatively, we may consider this BPMDP as the set Mk of all plausible MDPs
with state space S and action space A, whose transition probabilities and rewards
are contained in the confidence intervals given by (5) and (6). Although the confi-
dence intervals eventually used by the aggregation are larger than the ones given
in (5) and (6), we still make use of the latter. This is convenient, as it makes the
analysis not only simpler, we can also use large parts of the proofs given in [14],
where the same confidence intervals are used. Thus, in particular we also leave the
general structure of the proof of Theorem 2 in [14] intact.

5.2 Splitting into Episodes

Recall that rt is the random reward our algorithm receives at step t when starting
in the initial state s1. For given state-action counts N(s, a) after T steps, the rt

are independent random variables, so that Hoeffding’s inequality implies that the
regret of UCAgg is bounded as

Tρ∗ −
TX

t=1

rt < Tρ∗ −
X
s,a

N(s, a) · r(s, a) +

r
5
8T log

“
8T
δ

”

8 Ronald Ortner

with probability at least 1 − δ
12T 5/4 . Denoting the number of episodes started up

to step T by m, we have
Pm

k=1 vk(s, a) = N(s, a) and
P

s,a N(s, a) = T . Therefore,

writing ∆k :=
P

s,a vk(s, a)
`
ρ∗ − r(s, a)

´
, it follows that

Tρ∗ −
TX

t=1

rt ≤
mX

k=1

∆k +

r
5
8T log

“
8T
δ

”
(8)

with probability at least 1− δ
12T 5/4 .

5.3 Dealing with Failing Confidence Regions

Considering the regret of episodes in which the set of plausible MDPs Mk does
not contain the true MDP M ,

Pm
k=1 ∆k1M 6∈Mk

, it was shown in [14], eq.(9) on

p.1574 that with probability at least 1− δ
12T 5/4 ,

mX
k=1

∆k1M 6∈Mk
≤
√

T . (9)

5.4 Episodes with M ∈Mk

Now let us assume that M ∈ Mk and consider the regret in a single episode k.
Recall that π̃agg

k is the optimal policy on the optimistically chosen aggregated

MDP M̃agg
k (cf. step 4 of the algorithm). Further, let ρ̃agg

k be the average reward

of π̃agg
k on M̃agg

k , and denote the rewards and transition probabilities in M̃agg
k by

r̃agg
k (Sj , a) and p̃agg

k (·|Sj , a), respectively.
By the assumption of M ∈ Mk, and Theorem 7 of [14] about extended value

iteration we get that ρ̃agg
k ≥ ρ∗ − 1/

√
tk. Thus for the regret ∆k accumulated

in episode k we obtain by definition of the optimistic rewards in the aggregated
states, now writing Sj(s) for the aggregated state which contains s

∆k =
X
s,a

vk(s, a)
`
ρ∗ − r(s, a)

´
≤
X
s,a

vk(s, a)
`
ρ̃agg

k − r(s, a)
´
+
X
s,a

vk(s, a)√
tk

=
X
s,a

vk(s, a)
“
ρ̃agg

k − r̃agg
k

`
Sj(s), a

´”
+
X
s,a

vk(s, a)
“
r̃agg
k

`
Sj(s), a

´
− r(s, a)

”
+
X
s,a

vk(s, a)√
tk

≤
X
Sj ,a

vagg
k (Sj , a)

`
ρ̃agg

k − r̃agg
k (Sj , a)

´
+
X
s,a

vk(s, a)
“
r̃agg
k

`
Sj(s), a

´
− r(s, a)

”
+
X
s,a

vk(s, a)√
tk

, (10)

where vagg
k (Sj , a) :=

P
s∈Sj

vk(s, a) is the number of visits in states contained in
aggregated state Sj in episode k.

Adaptive Aggregation for Reinforcement Learning in Average Reward MDPs 9

5.4.1 Extended Value Iteration on the Aggregated Optimistic MDP

One of the results about extended value iteration [14] which easily can be adapted
to the aggregated case is that

max
Sj

ui(Sj)−min
Sj

ui(Sj) ≤ D. (11)

Indeed, as shown in [14], eq.(11) on p.1575, the BPMDP given by (5) and (6) has
diameter at most D. This also holds in the aggregated BPMDP, as the confidence
intervals used are even larger. Further, when extended value iteration terminates
at iteration i, then by eq.(9) of [14]

|ui+1(Sj)− ui(Sj)− ρ̃agg
k | ≤ 1√

tk
(12)

for all aggregated states Sj . By definition of extended value iteration, we have

ui+1(Sj) = r̃agg
k (Sj , π̃

agg
k (Sj)) +

X
S′j

p̃agg
k

`
S′j |Sj , π̃

agg
k (Sj)

´
· ui(S

′
j),

and hence by (12)˛̨̨̨„
ρ̃agg

k − r̃agg
k (Sj , π̃

agg
k (Sj))

«
−
„X

S′j

p̃agg
k

`
S′j |Sj , π̃

agg
k (Sj)

´
·ui(S

′
j)−ui(Sj)

«˛̨̨̨
≤ 1√

tk
.

(13)
Let rk :=

`
r̃agg
k

`
Sj , π̃

agg
k (Sj)

´´
Sj

be the (column) vector of rewards for pol-

icy π̃agg
k , P̃

agg
k :=

`
p̃agg
k

`
S′j |Sj , π̃

agg
k (Sj)

´ ´
Sj ,S′j

the transition matrix of π̃agg
k on

M̃agg
k , vk :=

`
vk

`
s, π̃agg

k (s)
´´

s
the (row) vector of visit counts for each state and

the corresponding action chosen by π̃agg
k in the respective meta-state Sj(s), and

vagg
k :=

`
vk

`
Sj , π̃

agg
k (Sj)

´´
Sj

the respective aggregated vector of state visits. Then

— recalling that vk(Sj , a) = 0 for a 6= π̃agg
k (Sj) — we can use (13) to obtain

from (10) that

∆k ≤ vagg
k

`
P̃

agg
k − I

´
ui +

X
s,a

vk(s, a)
“
r̃agg
k

`
Sj(s), a

´
− r(s, a)

”
+ 2

X
s,a

vk(s, a)√
tk

.

Since the rows of P̃
agg
k sum to 1, we can replace ui with — note that i actually

depends on k — wagg
k defined by

wagg
k (Sj) := ui(Sj)−

minSj
ui(Sj) + maxSj

ui(Sj)

2
,

such that it follows from (11) that ‖wk‖∞ ≤ D/2. Further, since we assume M ∈
Mk, we have by (5) and condition (7)

r̃agg
k

`
Sj(s), a

´
− r(s, a) ≤ 2cr,k

r
7 log(2SAtk/δ)
max{1,Nk(s,a)} ,

where cr,k is the reward connectivity of the aggregation in episode k. Consequently,

∆k ≤ vagg
k

`
P̃

agg
k − I

´
wagg

k + cr,k

X
s,a

vk(s, a)

r
28 log(2SAtk/δ)
max{1,Nk(s,a)} + 2

X
s,a

vk(s, a)√
tk

. (14)

10 Ronald Ortner

As max{1, Nk(s, a)} ≤ tk ≤ T , it follows from (14) that

∆k ≤ vagg
k

`
P̃

agg
k − I

´
wagg

k + cr,k

 r
28 log

“
2SAT

δ

”
+ 2

!X
s,a

vk(s,a)√
max{1,Nk(s,a)}

. (15)

5.4.2 The True Transition Matrix

We continue analyzing the term vagg
k

`
P̃

agg
k −I

´
wk. Recall that St is the aggregated

state at step t, and let e` be the unit vector with `-th coordinate 1 and all other
coordinates 0. Now observe that

vagg
k

`
P̃

agg
k − I

´
wagg

k =

tk+1−1X
t=tk

“
p̃agg
k (·|St, at)− eSt

”
wagg

k (16)

=

tk+1−1X
t=tk

p̃agg
k (·|St, at)wagg

k −
tk+1−1X
t=tk

wagg
k (St+1) + wagg

k (Stk+1)− wagg
k (Stk).

Now recalling that p (Sj |s, a) :=
P

s′∈Sj
p
`
s′|s, a

´
for all s, a, Sj , we have

tk+1−1X
t=tk

p̃agg
k (·|St, at)wagg

k =

tk+1−1X
t=tk

X
Sj

p̃agg
k (Sj |St, at)wagg

k (Sj) (17)

=

tk+1−1X
t=tk

X
Sj

“
p̃agg
k (Sj |St, at)− p (Sj |st, at)

”
wagg

k (Sj) +

tk+1−1X
t=tk

X
s

p (s|st, at)wk(s),

where we set wk(s) := wk(Sj) for s ∈ Sj . By (6), (7), and the assumption that
M ∈Mk we have

X
Sj

˛̨̨
p̃agg
k (Sj |St, at)− p (Sj |st, at)

˛̨̨
≤ 2cp,k

r
14S log(2Atk/δ)

1
2 max{1,Nk(st,at)}

,

where cp,k is the transition connectivity of the aggregation used in episode k.
Hence, recalling that ‖wk‖∞ ≤ D/2,

tk+1−1X
t=tk

X
Sj

“
p̃agg
k (Sj |St, at)− p (Sj |st, at)

”
wagg

k (Sj)

≤
tk+1−1X
t=tk

D · cp,k

r
14S log(2Atk/δ)

1
2 max{1,Nk(st,at)}

≤ cp,kD
X
s,a

vk(s, a)

r
28S log(2Atk/δ)
max{1,Nk(s,a)} .

Together with (16) and (17) this yields

vagg
k

`
P̃

agg
k − I

´
wagg

k ≤ cp,kD

r
28S log

“
2AT

δ

”X
s,a

vk(s,a)√
max{1,Nk(s,a)}

(18)

+

tk+1−1X
t=tk

X
s

p (s|st, at)wk(s)−
tk+1−1X
t=tk

wagg
k (St+1) + wagg

k (Stk+1)− wagg
k (Stk).

Adaptive Aggregation for Reinforcement Learning in Average Reward MDPs 11

5.4.3 Summing over Episodes with M ∈Mk

Now we are ready to sum up the regret over the individual episodes. First, a
martingale argument shows (see eq.(18) on p.1577 of [14]) that

mX
k=1

0@tk+1−1X
t=tk

X
s

p (s|st, at)wk(s)−
tk+1−1X
t=tk

wagg
k (St+1) + wagg

k (Stk+1)− wagg
k (Stk)

1A
≤ D

r
5
2T log

“
8T
δ

”
+ DSA log2

“
8T
SA

”
(19)

with probability at least 1− δ
12T 5/4 . The second term in the bound of (19) stems

from an upper bound on the number of episodes. As the criterion for episode
termination is the same as for the UCRL algorithm, the same bound applies. Now
setting C := max{maxk cr,k,maxk cp,k} and summing (15) over all episodes with

M∈Mk, using (18) and (19), yields that with probability at least 1− δ
12T 5/4

mX
k=1

∆k1M∈Mk
≤

mX
k=1

vagg
k

`
P̃

agg
k − I

´
wagg

k 1M∈Mk

+
mX

k=1

cr,k

r
28 log

“
2SAT

δ

”
+ 2

!X
s,a

vk(s,a)√
max{1,Nk(s,a)}

≤ CD

r
28S log

“
2AT

δ

”
·

mX
k=1

X
s,a

vk(s,a)√
max{1,Nk(s,a)}

+ D

r
5
2T log

“
8T
δ

”
+ DSA log2

“
8T
SA

”
+ C

 r
28 log

“
2SAT

δ

”
+ 2

!
mX

k=1

X
s,a

vk(s,a)√
max{1,Nk(s,a)}

. (20)

Now, as shown in [14], eq.(20) on p.1578, it holds that

X
s,a

X
k

vk(s,a)√
max{1,Nk(s,a)}

≤
“√

2 + 1
”√

SAT , (21)

and we get from (20) after some minor simplifications that with probability at
least 1− δ

12T 5/4

mX
k=1

∆k1M∈Mk
≤ D

r
5
2T log

“
8T
δ

”
+ DSA log2

“
8T
SA

”

+

2CD

r
28S log

“
2AT

δ

”
+ 2

!“√
2 + 1

”√
SAT . (22)

12 Ronald Ortner

Now, according to (8) we obtain by summing ∆k over all episodes, using (9)
and (22), that the regret is bounded by

Tρ∗ −
TX

t=1

rt ≤
mX

k=1

∆k1M/∈Mk
+

mX
k=1

∆k1M∈Mk
+

r
5
8T log

“
8T
δ

”
≤
√

T + D

r
5
2T log

“
8T
δ

”
+ DSA log2

“
8T
SA

”
+

2CD

r
28S log

“
2AT

δ

”
+ 2

!“√
2 + 1

”√
SAT +

r
5
8T log

“
8T
δ

”
with probability at least 1− δ

12T 5/4 − δ
12T 5/4 − δ

12T 5/4 . Further simplifications (anal-
ogous to [14], Appendix C.4) and a union bound over all possible values of T , using
that

P∞
T=2

δ
4T 5/4 < δ, yield the bound of the theorem.

6 An Algorithm for Aggregation

So far, we have left it open how to aggregate. In this section we present a simple
algorithm for aggregating BPMDPs. Algorithm 2 is a straightforward adaptation
of the algorithm for approximate ε-aggregation given in [10]: Where the algorithm
of [10] demands ε-closeness of rewards and transition probabilities, we have the
condition of non-empty intersection of the respective ranges. Thus, the algorithm
starts by building a graph with vertices in S, where two states are connected if
their reward ranges intersect for all actions. Then the algorithm checks whether the
transition probabilities of two states behave similarly (i.e., ranges intersect) with
respect to the current partition induced by the graph’s connected components.

It is easy to see that if one is interested in neat partitions, one has to identify all
the cliques in the graph. Thus, it is not surprising that finding a neat aggregation
with minimal number of aggregated states is NP-hard, cf. [10].

Note that it is easy to adapt Algorithm 2 so that the output aggregation also
satisfies assumption (7) of UCAgg. It is sufficient to add (7) as additional condition
when building the similarity graph at the beginning of the algorithm. Thus, two
vertices s, s′ in the graph are only connected if their state-action counts Nk(s, a),
Nk(s′, a) satisfy (7) for all actions a.

The following results for the aggregation algorithm can be straightforwardly
adapted from [10].

Lemma 1 If there is a neat aggregation of a BPMDP such that states s, s′ are con-

tained in the same meta-state, then s, s′ will not be separated by the algorithm.

Lemma 2 Let {S1, . . . , Sn} be the partition output by the algorithm. If

maxi diameter(Si) ≥
p
|S| then there are at least

q
|S|
2 states in the minimal

neat aggregation.

Theorem 2 Algorithm 2 gives an aggregation which is by a factor of at most 2
p
|S|

larger than the minimal neat aggregation. Further, the reward and transition connec-

tivity of the arising aggregation is at most
p
|S|.

Adaptive Aggregation for Reinforcement Learning in Average Reward MDPs 13

Algorithm 2 Compute aggregation from BPMDP

Input: A BPMDP with state space S, action space A, reward ranges r̄(s, a) and transition
probability ranges p̄(·|s, a).

Let G = (S, E) be a graph with (s, s′) ∈ E if r̄(s, a) ∩ r̄(s′, a) 6= ∅ for all a ∈ A.
repeat

deleted := false
for each (s, s′) ∈ E do

for each a ∈ A do
if p̄(·|s, a) ∩ p̄(·|s′, a) = ∅ then

delete edge (s, s′) from G
deleted := true

end if
end for

end for
until deleted=false
compute the connected components S1, . . . , Sn of G
if maxi diameter(Si) ≥

p
|S| then

return S
else

return {S1, . . . , Sn}
end if

The following corollary follows immediately from Theorems 1 and 2.

Corollary 1 Given an MDP with S states, A actions and diameter D, with probability

of at least 1− δ it holds that for any initial state s1 ∈ S and any T > 1, the regret of

UCAgg using Algorithm 2 for aggregation is bounded by

49 ·DS3/2
q

AT log
`

T
δ

´
.

Thus, compared to the original bound of UCRL, we have an additional factor
of
√

S in the regret bound.

7 Discussion

7.1 Related Regret Bounds in the Literature

So far, we have compared the regret bounds for our algorithm only to the original
UCRL algorithm [14]. Here we would like to complement this with a brief summary
of similar bounds in the literature. For a more detailed comparison we refer to
Section 1.1 of [14].

In the wake of logarithmic regret bounds for the simpler multi-armed bandit
problem [16,15,5,1], such bounds have been derived for the more general MDP
setting as well, starting with the work of Burnetas and Katehakis [6]. Similarly to
UCRL or UCAgg, the so-called index policies of [6] (cf. also the more recent [31])
choose actions optimistically by employing confidence bounds (however unlike in
our case only for the estimates in the current state). The respective regret bound
for ergodic MDPs is asymptotically logarithmic in the horizon T . Unlike the bound
for UCAgg, this bound depends on the gap between the performance of the best
and the second best action. A corresponding gap-dependent logarithmic bound
holds for UCRL, too (cf. Theorem 4 in [14]). As our bound, this bound holds

14 Ronald Ortner

uniformly over time and under the weaker assumption that the underlying MDP
is communicating. We believe that a corresponding logarithmic bound for UCAgg

can be derived – adapting the proof of Theorem 4 in [14] – as well.
More recently, the results for UCRL have been extended by Bartlett and

Tewari [2]. In the regret bound for their REGAL algorithm, the diameter is re-
placed with a smaller transition parameter D1. Further, this bound also holds
when the MDP has some transient states. However, as an additional assumption
an upper bound on the parameter D1 is needed. When no upper bound on D1 is
known, the bound’s dependence on the number of states S deteriorates from S to
S3/2, similarly to our bound for UCAgg.

Another line of research pursues similar ideas in the setting with discounted
rewards. Thus, Chang et al. [7,8] employ upper confidence bounds for a sampling-
based approach, while the MBIE algorithm of Strehl and Littman [29,30] uses
confidence bounds – similarly to UCRL – to compute an optimistic policy. In either
case regret bounds which are logarithmic in the horizon are shown. While the two
considered notions of regret differ from each other, they both consider the regret
on the path chosen by the respective algorithm. Unlike that, in the undiscounted
setting considered here the regret is measured with respect to the (expected) path
chosen by the optimal policy, which is more difficult. For a detailed comparison
of the notions of regret in discounted and undiscounted setting see Section 1.1 of
[14].

7.2 Computational Considerations

The most costly step in the original UCRL algorithm is the calculation of the
near-optimal policy in an optimistic BPMDP (corresponding to step 4 of UCAgg)
by extended value iteration. Extended value iteration takes O(AS2) computation
steps per iteration [14]. Thus, the speed up for the extended value iteration step for
UCAgg is considerable when aggregation decreases the size of the state space. This
has been confirmed by some preliminary experiments comparing the computational
performance of UCRL with UCAgg. In most cases, UCAgg performed significantly
faster than UCRL also when taking into account the time for computing the
aggregation (the complexity of which is of the same order as that of a single
step of extended value iteration). However, in some cases – in particular when
extended value iteration converged in few iteration steps – the computational
overhead caused by the proposed aggregation algorithm outweighed the gain for
extended value iteration. On the other hand, concerning the regret UCRL and
UCAgg seem to perform equally well, in spite of the slightly worse theoretical
bound for UCAgg.

One way to speed up aggregation is to aggregate hierarchically. Thus, instead
of recalculating the aggregation in each episode from the scratch (as in the given
algorithm), one refines the aggregation from the previous episode. It is clear that
this saves a lot of computation time: Instead of comparing each two states to each
other, it is sufficient to compare states already contained in an aggregated state.
While experiments indeed show improved computational performance, one has to
be careful about the theoretical guarantees for hierarchical aggregation. It could
happen that aggregations in earlier episodes are based on wrong confidence inter-
vals, from which the algorithm may not recover subsequently. Thus, hierarchical

Adaptive Aggregation for Reinforcement Learning in Average Reward MDPs 15

aggregation has to be complemented by the use of appropriate confidence intervals
in order to maintain the introduced regret bounds.

7.3 Outlook

Beside the question of improved aggregation techniques, another topic which has
not been touched in this paper concerns the actions. We have only been checking
for aggregation of states with respect to the same action and have neglected the
possibility that two states s, s′ may behave similarly when mapping the actions of
s to the actions of s′ in a suitable way. More generally, aggregation of actions may
also make sense.

Acknowledgments

The author would like to thank Peter Auer for discussion of some preliminary
ideas, Shiau Hong Lim for sharing his power plug adapter at Cumberland Lodge,
and the anonymous reviewers for their comments, which helped to improve the
paper. The research leading to these results has received funding from the Euro-
pean Community’s Seventh Framework Programme (FP7/2007-2013) under grant
agreements n◦ 216886 (PASCAL2 Network of Excellence), and n◦ 231495 (project
CompLACS). The final version of this paper has been prepared when the author
was supported by the Austrian Science Fund (FWF): J 3259-N13.

References

1. P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multi-armed bandit
problem. Mach. Learn., 47:235–256, 2002.

2. P. L. Bartlett and A. Tewari. REGAL: A regularization based algorithm for reinforcement
learning in weakly communicating MDPs. In UAI 2009, Proc. 25th Annual Conference
on Uncertainty in Artificial Intelligence, pages 35–42, 2009.

3. D. P. Bertsekas and D. A. Castañon. Adaptive aggregation methods for infinite horizon
dynamic programming. IEEE Trans. Autom. Control, 34(6):589–598, 1989.

4. L. Buşoniu, B. D. Schutter, and R. Babuška. Approximate dynamic programming and
reinforcement learning. In Interactive Collaborative Information Systems, pages 3–44.
2010.

5. A. N. Burnetas and M. N. Katehakis. Optimal adaptive policies for sequential allocation
problems. Adv. in Appl. Math., 17(2):122–142, 1996.

6. A. N. Burnetas and M. N. Katehakis. Optimal adaptive policies for Markov decision
processes. Math. Oper. Res., 22(1):222–255, 1997.

7. H. S. Chang, M. C. Fu, J. Hu, and S. I. Marcus. An adaptive sampling algorithm for
solving Markov decision processes. Oper. Res., 53(1):126–139, 2005.

8. H. S. Chang, M. C. Fu, J. Hu, and S. I. Marcus. Simulation-based Algorithms for Markov
Decision Processes. Springer, London, 2007.

9. C. Diuk, L. Li, and B. R. Leffler. The adaptive k-meteorologists problem and its application
to structure learning and feature selection in reinforcement learning. In Proc. 26th Annual
International Conference on Machine Learning, ICML 2009, page 32, 2009.

10. E. Even-Dar and Y. Mansour. Approximate equivalence of Markov decision processes.
In Computational Learning Theory and Kernel Machines, 16th Annual Conference on
Computational Learning Theory and 7th Kernel Workshop, pages 581–594, 2003.

11. N. Ferns, P. Panangaden, and D. Precup. Metrics for finite Markov decision processes. In
UAI ’04, Proc. 20th Conference in Uncertainty in Artificial Intelligence, pages 162–169,
2004.

16 Ronald Ortner

12. R. Givan, T. Dean, and M. Greig. Equivalence notions and model minimization in Markov
decision processes. Artif. Intell., 147(1-2):163–223, 2003.

13. R. Givan, S. M. Leach, and T. Dean. Bounded-parameter Markov decision processes.
Artif. Intell., 122(1-2):71–109, 2000.

14. T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement learning.
J. Mach. Learn. Res., 11:1563–1600, 2010.

15. M. N. Katehakis and H. Robbins. Sequential choice from several populations. Proceedings
of the National Academy of Sciences of the United States of America, 92(19):8584–8585,
1995.

16. T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Adv. in Appl.
Math., 6:4–22, 1985.

17. B. R. Leffler, M. L. Littman, and T. Edmunds. Efficient reinforcement learning with
relocatable action models. In Proc. 22nd AAAI Conference on Artificial Intelligence,
pages 572–577, 2007.

18. L. Li. A Unifying Framework for Computational Reinforcement Learning Theory. PhD
thesis, Rutgers University, 2009.

19. L. Li, M. L. Littman, T. J. Walsh, and A. L. Strehl. Knows what it knows: a framework
for self-aware learning. Mach. Learn., 82(3):399–443, 2011.

20. L. Li, T. J. Walsh, and M. L. Littman. Towards a unified theory of state abstraction for
MDPs. In Proc. 9th International Symposium on Artificial Intelligence and Mathematics,
pages 531–539, 2006.

21. S. Mannor, I. Menache, A. Hoze, and U. Klein. Dynamic abstraction in reinforcement
learning via clustering. In Machine Learning, Proc. 21st International Conference, ICML
2004, 2004.

22. R. Munos. Approximate dynamic programming. In O. Sigaud and O. Buffet, editors,
Markov Decision Processes in Artificial Intelligence, chapter 3, pages 67–98. 2010.

23. R. Ortner. Pseudometrics for state aggregation in average reward Markov decision pro-
cesses. In Algorithmic Learning Theory, 18th International Conference, ALT 2007, pages
373–387, 2007.

24. M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., New York, NY, USA, 1994.

25. B. Ravindran and A. G. Barto. SMDP homomorphisms: An algebraic approach to ab-
straction in semi-Markov decision processes. In IJCAI-03, Proc. 18th International Joint
Conference on Artificial Intelligence, pages 1011–1018, 2003.

26. B. V. Roy. Performance loss bounds for approximate value iteration with state aggregation.
Math. Oper. Res., 31(2):234–244, 2006.

27. S. P. Singh, T. Jaakkola, and M. I. Jordan. Learning without state-estimation in partially
observable Markovian decision processes. In Machine Learning, Proc. 11th International
Conference, ICML 1994, pages 284–292, 1994.

28. A. L. Strehl, C. Diuk, and M. L. Littman. Efficient structure learning in factored-state
MDPs. In Proc. 22nd AAAI Conference on Artificial Intelligence, pages 645–650, 2007.

29. A. L. Strehl and M. L. Littman. A theoretical analysis of model-based interval estimation.
In Machine Learning, Proc. 22nd International Conference, ICML 2005, pages 857–864,
2005.

30. A. L. Strehl and M. L. Littman. An analysis of model-based interval estimation for Markov
decision processes. J. Comput. System Sci., 74(8):1309–1331, 2008.

31. A. Tewari and P. Bartlett. Optimistic linear programming gives logarithmic regret for
irreducible MDPs. In Adv. Neural Inf. Process. Syst. 20, pages 1505–1512. 2008.

32. A. Tewari and P. L. Bartlett. Bounded parameter Markov decision processes with average
reward criterion. In Learning Theory, 20th Annual Conference on Learning Theory, COLT
2007, pages 263–277, 2007.

