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Abstract Work in online learning traditionally considered induction-friendly
(e.g. stochastic with a fixed distribution) and induction-hostile (adversarial)
settings separately. While algorithms like Exp3 that have been developed for
the adversarial setting are applicable to the stochastic setting as well, the
guarantees that can be obtained are usually worse than those that are avail-
able for algorithms that are specifically designed for stochastic settings. Only
recently, there is an increasing interest in algorithms that give (near-) optimal
guarantees with respect to the underlying setting, even in case its nature is
unknown to the learner.

In this paper, we review various online learning algorithms that are able
to adapt to the hardness of the underlying problem setting. While our focus
lies on the application of adaptive algorithms as meta-inductive methods that
combine given base methods, concerning theoretical properties we are also
interested in guarantees that go beyond a comparison to the best fixed base
learner.

Keywords Online learning · Regret · Prediction with expert advice ·
Multi-armed bandit problem

1 Introduction

The program of meta-induction as introduced by Schurz (2019) is built upon
formal results from online learning theory. The goal of this paper is to discuss
some of the relevant literature from this field under the perspective of the
meta-inductive program. In particular, we want to give pointers to alternative
as well as complementary settings, algorithms, and performance measures that
we think are worth considering.
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Most importantly, we want to focus on learning (meta-)algorithms that are
particularly adaptive in the sense that they are able to combine (near-) optimal
behavior in different settings. These algorithms do not just satisfy a uniform
worst case performance guarantee, but are able to adapt to the difficulty of
the underlying problem, which is obviously of importance for the program of
meta-induction.

2 Which Setting of Induction?

2.1 Schurz’ setting of meta-induction

Schurz (2019) considers the following setting of sequence prediction. The goal
is to predict for discrete time steps t = 1, 2, . . . the event et of an unknown
sequence e1, e2, . . ., where it is assumed that events are encoded as real num-
bers in the closed interval [0, 1]. At each time step t the learner selects a
prediction pt taken from [0, 1] and suffers a loss of `(pt, et) for a loss function
` : [0, 1] × [0, 1] → [0, 1] that intuitively measures the distance between the
prediction pt and the true event et.

A straightforward choice to measure the performance of a learner choosing
predictions pt would be the total loss

LT :=

T∑
t=1

`(pt, et)

after T steps. More precisely, one would consider a learner to be successful
if the average loss 1

T LT vanishes for T → ∞, that is, limT→∞
1
T LT = 0.

Obviously, the considered setting is very general and it is easy to see that for
each learning algorithm there will be sequences et so that its total loss with
respect to a reasonable loss function will be large, that is, it will suffer total
loss linear in T (i.e., LT ≈ c · T for a constant c).

There are two ways to make learning possible in the considered setting.
The first is to make some assumptions on the generation of the underlying
sequence to be predicted. For example one may assume that the sequence is
generated by a fixed probability distribution unknown to the learner. This
would presume an induction-friendly setting and hence is not suitable if one
aims at a general justification of induction.

The alternative is to restrict the hypothesis space by assuming that the
learner has access to a set of experts indexed by 1, 2, . . . ,K. At each step t

each expert i produces her own prediction p
(i)
t . The learner can observe all

the experts’ predictions as well as the respective losses `
(i)
t := `(p

(i)
t , et). More-

over, the goal of the learner is more modest. Instead of insisting on achieving
sublinear total loss, she is happy to compete with the best fixed expert in

hindsight. That is, if L
(i)
T :=

∑T
t=1 `

(i)
t denotes the total loss of expert i af-

ter T steps, we are interested in learning algorithms that are able to keep

the difference to mini L
(i)
T small. Accordingly, we aim at algorithms for which
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limT→∞
1
T (LT −mini L

(i)
T ) = 0. More generally, we are also interested in the

rate with which the loss difference approaches 0 and define the regret of a
learning algorithm A after T steps as

RAT := LT −min
i
L
(i)
T . (1)

2.2 Prediction with Expert Advice

The setting introduced in the previous section is a special case of what is known
as prediction with expert advice (short PEA in the following) in the online
learning community. More generally, the events et are taken from an outcome
space O, and the learner’s prediction is more generally coined as a decision
taken from a decision space D. Accordingly, the loss function ` : D ×O → R
provides non-negative feedback for each decision-outcome-pair. In some cases
this can be interpreted as a distance (as before), or it can be e.g. the cost (or
reward) for taking a decision in some state of nature. Apart from these slight
generalizations the setting remains the same as before.

2.3 Learning Reductions to PEA

First note that while the considered online prediction setting may seem very
special, it can represent seemingly different or more general scenarios as well.
Consider e.g. the following online classification problem. The learner receives a
sequence of observations x1, x2, . . . one after another. For each observation xt
taken from some space X the task is to provide a label yt ∈ Y. In the simplest
case the label is binary, i.e., Y = {0, 1}, e.g. indicating some particular property
of the respective observation. For example, the xt could be image data and
the label would be 1 if the image shows a horseshoe crab and 0 otherwise.
Transferred to the sequence prediction setting the goal of the learner is to
predict the next entry in the sequence x1, y1, x2, y2, . . . , xt, that is, D = Y and
O = Y × X .

This latter setting obviously corresponds to scenarios usually associ-
ated with induction where one e.g. “concludes” from uniform observations
x1, x2, . . . , xt−1 all having the same property (i.e., label) y to observation xt
(or more generally all further observations xt, xt+1, . . .) also having property y.

We note however, that formally it is not straightforward to apply the results
and algorithms usually given for the PEA setting to classification problem as
specified before. For a more detailed account see e.g. Section 5 of Cesa-Bianchi
et al. (1997) or the application of the Hedge algorithm of Freund and Schapire
(1997) to classification problems in form of the influential Boosting algorithm
(see also Section 3.3.2 below). For more on reductions of different learning
settings see e.g. (Langford and Zadrozny, 2005).

In the course of this paper we will also consider different feedback models
like the multi-armed bandit problem as well as performance measures that are
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alternatives to the notion of regret defined in (1). In the remainder of this
section however we want to discuss some more technical choices to be made
in the meta-inductive PEA setting.

2.4 Encoding of events

For technical reasons the decision space in the PEA setting is often assumed
to be a convex subset of some vector space. In particular, many algorithms
such as the exponential forecasting algorithm EAW suggested by Schurz (2019)
predict a convex combination of the predictions of the single experts. As in
the setting of Schurz (2019) predictions as well as events are assumed to be in
[0, 1] that way one always obtains a valid prediction in [0, 1].

However, if the events are encodings of instances taken from a different
domain it is by no means guaranteed that the convex combination of the
experts’ predictions will result in a number that corresponds to an instance of
the original instance set. This would need additional assumptions like that the
encoding is surjective, i.e., any number in [0, 1] is an encoding of an element
of the original instance set. In many natural cases such an assumption will
not hold, for example, if the the original instance set is countable. We refer to
Section 3.2 for a more detailed discussion of such discrete settings.

2.5 The choice of the loss function

Concerning the loss function, also depending on the specific setting some
choices may appear more natural than others. In general, the loss function
will have an effect on the performance of a prediction algorithm and hence
also on the choice of the preferred algorithm. For example, the main result1

for the EAW algorithm suggested by Schurz (2019) rests on the assumption
that the used loss function is convex in the first argument. For particular loss
functions improved performance guarantees can be given, cf. Chapter 3 of
(Cesa-Bianchi and Lugosi, 2006) and the respective Proposition 6.7 for exp-
concave loss functions in (Schurz, 2019).

In particular for the application to meta-induction, the choice of the loss
function may be not just a convention. Rather a whole spectrum of induc-
tion problems should be covered, so that one has to put some effort in the
translation of the particular problem instances into the proposed setting of
meta-induction. Thus, beside the problem of encoding these instances by num-
bers in [0, 1], finding a suitable loss function that defines a natural distance
between the original instances is an additional challenge. This is basically a
(metric) multi-dimensional scaling problem for which several techniques have
been developed (Borg and Groenen, 2005).

1 Theorem 6.9 of (Schurz, 2019) on p. 145, cf. also Theorem 1 below.
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An interesting aspect of the PEA setting is that the underlying sequence
actually vanishes behind the loss sequences produced by each expert. Accord-
ingly, it may be natural to eliminate this aspect of the setting by assuming that
one directly observes loss sequences that can be interpreted as real rewards
obtained by the learner, for which a comparison is more straightforward. In
this setting the learner does not predict an underlying sequence any more,
but only chooses an expert (or more generally a distribution over experts that
can be interpreted as randomization). Such a setting is e.g. considered by
Cesa-Bianchi et al. (2007) (cf. Section 3.3.3 below and also the bandit setting
discussed in Section 4).

2.6 Translation and scaling of events and losses

Closely related to the choice of the loss function is the question of translation
or scaling of losses or events. In general, losses can be arbitrary real numbers.
However, the range of the loss function will obviously have an effect on the
achievable regret, so that it may seem preferable to normalize losses on some
closed interval like [0, 1]. Indeed, in the general PEA setting the sets O and D
are known, so that it is easy to define a loss function that maps to [0, 1]. How-
ever, as discussed in detail by Cesa-Bianchi et al. (2007) (cf. also Cesa-Bianchi
and Lugosi, 2006, Section 2.6) the respective transformation may harm the re-
spective regret bounds that can be achieved. For the discussion of algorithms
that are invariant with respect to natural transformations such as translation
and scalings we refer to the discussion in Section 3.3.3.

Note that in many practical settings the range of the sequence to be pre-
dicted will not be known in advance, so that it is difficult to specify a transfor-
mation of the actual events to a bounded interval like [0, 1]. However, clever
techniques can deal also with unknown ranges, see e.g. variants of the Prod
algorithm of Cesa-Bianchi et al. (2007) discussed in Section 3.3.3 below.

3 Adaptive Algorithms

3.1 The exponentially weighted average forecaster

The algorithm favored by Schurz (2019) is the exponentially weighted average
forecaster of Cesa-Bianchi and Lugosi (2006) (called EAW for exponential
attractivity weighted forecaster by Schurz, 2019). As several other algorithms
some of which we will discuss below this algorithm works with weights assigned
to the experts that are used to choose a prediction and that change depending

on the expert’s success. For the algorithm at hand the initial weights w
(i)
1 at

time t = 1 are set to 1 for each expert i. The update at any step t is done
according to

w
(i)
t := w

(i)
t exp(−η`(i)t )/N (2)
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for a parameter η and a factor N that normalizes weights to sum up to 1. The

prediction for step t is then given by
∑
i w

(i)
t p

(i)
t . One can show that the regret

after any T steps is2 O(
√
T logK). The following result of Cesa-Bianchi and

Lugosi (2006) basically corresponds to (6.7) of Schurz (2019).

Theorem 1 (Theorem 2.2 of Cesa-Bianchi and Lugosi, 2006) After
any T steps the regret of the exponentially weighted average forecaster choosing
η =

√
8(logK)/T is bounded by

√
T (logK)/2, provided that the loss function

` is convex in its first argument.

It can be shown that this bound is in general not improvable, cf. Section 3.7
of Cesa-Bianchi and Lugosi (2006). Choosing time-dependent learning rates
ηt :=

√
8(log T )/t one can obtain similar results without knowing the hori-

zon T in advance, cf. Theorem 2.3 of Cesa-Bianchi and Lugosi (2006) and the
corresponding Theorem 6.9 of Schurz (2019).

3.2 The weighted majority algorithm and mistake bounds

As discussed in Section 6.7 of (Schurz, 2019), the original PEA setting has its
limitations. Most importantly, for the very natural settings in which the out-
come space O and the decision space D coincide and are discrete, a (convex)
combination of expert predictions as usually suggested by weighted forecast-
ing algorithms does not give a valid prediction in general. Still the situation
is not completely hopeless when interpreting the weights of the experts as
probabilities of a randomized approach.

While randomization is a powerful tool, having access to independent ran-
dom variables may be considered as a (too) strong assumption. Schurz (2019)
suggests to simulate randomization via a collective of experts approximating
the probability distribution over the possible predictions (cf. Section 6.7.2 of
Schurz, 2019). However, in some simple cases one can avoid randomization us-
ing a simple algorithm also employing exponential weights to decide according
to the weighted majority.

The most basic form of the weighted majority algorithm has been suggested
by Littlestone and Warmuth (1994) for binary prediction problems. That is,
outcome space O and decision space D are binary, i.e., O = D = {0, 1}, and
the loss function is defined by `(d, o) = |d− o| for d ∈ D and o ∈ O.

The weighted majority algorithm works as follows. Initializing weights

w
(i)
1 = 1 for each expert i, in each time step one sums up over the experts that

predict 0 and compares this total weight to the respective sum over all experts
predicting 1. The group of experts with larger total weight decides on the
prediction at the current step. After observing the true outcome all experts’
weights that predicted wrongly are discounted by a factor η with 0 < η < 1.

2 Here and in the following we use the Landau notation O(·) to denote asymptotic upper
bounds on the regret.
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This can be interpreted as an update rule of the form

w
(i)
t := w

(i)
t−1η

`
(i)
t (3)

for ` as defined before.

Note that this algorithm is not only very simple, it also does not need any
randomization. The analysis of the algorithm is as simple as the algorithm itself
and yields the following upper bound on the number of wrong predictions of
the algorithm.

Theorem 2 (Littlestone and Warmuth, 1994) The number m of mis-
takes made by the weighted majority algorithm is bounded according to

m ≤
log(K) +mi log

(
1
η

)
log
(

2
1+η

) , (4)

where mi is the number of mistakes made by expert i.

Note that unlike the regret bounds we have seen so far this mistake bound
is independent of the horizon. Actually, setting η :=

√
(logK)/T it is easy to

obtain from (4) a regret bound of optimal order O(
√
T logK) after T steps

similar to Theorem 1.

The weighted majority algorithm can be generalized to non-binary predic-
tion settings resulting in an algorithm similar to the exponentially weighted
average forecaster algorithm. We will discuss the arising Hedge algorithm and
its variants in more detail in the following section. It will turn out that the
weighted majority algorithm and its relatives can be used directly or with
slight modifications to obtain adaptivity results that are stronger than the
regret bounds we have seen so far.

3.3 Adaptive algorithms based on weighted majority

In some sense, one could say that regret bounds for algorithms like the expo-
nentially weighted average forecaster or the weighted majority algorithm ac-
tually are not so much about learning or inductive inference as about keeping
track of the current best expert. Indeed, as already mentioned, the underly-
ing sequence to be predicted in the PEA setting actually vanishes and what
matters in the end are the loss sequences of the experts. Also with respect to
the framework of meta-induction it would be desirable to have algorithms that
are not only adaptive in the sense that they minimize the loss with respect to
the best expert, but are able to perform better on sequences that are easy to
predict. As in the PEA setting the experts serve as a basis for prediction, this
is obviously a challenging task.
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3.3.1 I.i.d. losses

As just noted, what matters in the PEA setting are the loss sequences of
the experts. So when talking about easy sequences we not necessarily mean
the underlying sequence to be predicted but rather the loss sequences of the
experts. Then a particularly easy setting is one where these loss sequences are
stochastic and i.i.d. We emphasize once more that this not necessarily means
that the underlying observations are stochastic and i.i.d. It is only guaranteed
that the interplay between observations and experts results in stochastic and
i.i.d. losses. There are several ways how this can happen, for example, when the
experts predict the observations perfectly only with some i.i.d. noise added.

In this particular setting a simple algorithm like Follow the Leader (FTL,
called Imitate the Best by Schurz, 2019) that chooses the best expert so far
works perfectly and indeed achieves constant regret. That is, the regret af-
ter any T steps will be bounded by a constant that is independent of T , cf.
(de Rooij et al., 2014) for details. Importantly, a lot of common PEA algo-
rithms with known regret guarantees perform worse than FTL on i.i.d. loss
sequences. On the other hand, for certain loss sequences FTL is known suffer
linear regret, see de Rooij et al. (2014).

3.3.2 Hedge

The question whether it is possible to combine FTL with other algorithms to
guarantee good performance on easy sequences but still overall regret bounds
of order O(

√
T logK) has sparked some interesting research, starting with the

Hedge strategy of Freund and Schapire (1997, 1999).
The Hedge algorithm of Freund and Schapire (1997, 1999) is a general-

ization of the weighted majority algorithm using the same weight updates as
given in (3) but for arbitrary loss functions `. More precisely, the learner at

each step t chooses a probability distribution (w̄
(1)
t , w̄

(2)
t , . . . , w̄

(K)
t ) over the

experts3 and suffers a loss of
∑
i w̄

(i)
t `

(i)
t . The regret of this generalized al-

gorithm can be shown to be of order O(
√
T logK) just as for the weighted

majority algorithm. Freund and Schapire (1997) also present an application to
classification problems in form of the seminal Boosting algorithm that enables
to combine several weak learners (that perform just a bit better than random)
to achieve high overall performance.

3.3.3 Prod

The Prod algorithm of Cesa-Bianchi et al. (2007) has been proposed for
a more general setting in that the sign of the losses can be arbitrary.
As before, the learner chooses at each step t a probability distribution

(w̄
(1)
t , w̄

(2)
t , . . . , w̄

(K)
t ) over the experts and receives a payoff of

∑
i w̄

(i)
t x

(i)
t ,

where x
(i)
t is the payoff of expert i. Here payoffs are taken from [−M,M ], that

3 Hedge simply normalizes the computed weights w
(i)
t to obtain the probabilities w̄

(i)
t .
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is, they can be positive (payoffs) or negative (losses). The Prod algorithm
updates the weights for each expert i according to

w
(i)
t := w

(i)
t−1(1 + ηx

(i)
t ) (5)

for a a parameter η, initializing weights to 1 as usual.

Whereas the regret bounds we have seen so far depend on the horizon T
as well as on the range of the payoffs,4 Cesa-Bianchi et al. (2007) provide
what they call higher order bounds that depend on the sum of the payoffs
(resulting in first order bounds) or the squared sums of the payoffs (giving

second order bounds). For example, defining Q∗T :=
∑T
t=1(x

(i∗)
t )2 to be the

sum of the squares of the best5 arm’s payoff, they show the following bound
on the regret of Prod.

Theorem 3 (Cesa-Bianchi et al., 2007) The regret of Prod with param-
eter η := min{1/(2M),

√
(logK)/Q∗} is upper bounded by

max
{

2
√
Q∗T logK, 4M logK

}
. (6)

Obviously, Q∗T is upper bounded by TM2, so that the second order bound
of Theorem 3 improves over the bounds we have seen so far whenever Q∗T is
smaller than TM2. While Theorem 3 assumes knowledge of the quantities Q∗T
and M , Cesa-Bianchi et al. (2007) also provide adaptations of the basic Prod
algorithm to deal with the usual case when neither Q∗T nor M are known.
Further, second-order bounds for the weighted majority algorithm using a
time-dependent learning rate are given as well.

Another important contribution of Cesa-Bianchi et al. (2007) is that they
also provide bounds that are stable under certain natural transformations like
additive translations and rescalings of the payoffs. It is also discussed how given
(unstable) regret bounds can be improved by a meta-algorithm using artificial
translations of the payoffs, see Section 5 of (Cesa-Bianchi et al., 2007).

This is taken a step further by de Rooij et al. (2014) whose algorithms Ada-
Hedge and FlipFlop are themselves translation invariant. That is, not only the
regret bounds that hold for these algorithms are invariant under translation,
the algorithms do not change their behavior if payoffs (or losses) are shifted or
rescaled. As these algorithms are a bit more involved than the simple weight
update algorithms we consider here, we refer to (de Rooij et al., 2014) for
details.

4 The latter dependence has not been made explicit so far, as we have assumed that
losses are taken from [0, 1]. Obviously, when taking losses from a larger interval [0,M ], the
respective regret guarantees scale with an additional factor of M .

5 The best arm i∗ here is the best arm after T steps, which in general depends on T . For
the sake of readability we skipped this dependence from the notation.



10 N.N.

3.3.4 D-Prod

Based on Prod, Even-Dar et al. (2008) suggested the D-Prod algorithm that
aims to compete not only against the best expert but also against an arbitrary
given distribution D over the experts. The update of the weights is defined by

w
(i)
t := w

(i)
t−1
(
1 + η(x

(i)
t − x

(D)
t )

)
, (7)

where x
(D)
t denotes the payoff of the distribution D over the experts. This

distribution is also assigned a constant weight according to (7). Using a proper
initialization of weights one can show that the regret of D-Prod with respect
to the distribution D over the experts is constant, while the regret with respect
to the best expert in hindsight is not much worse than for the algorithms we
have seen so far.

Theorem 4 (Even-Dar et al., 2008) The regret of D-Prod with parameter

η :=
√

(logK)/T and initial weights w
(i)
1 := η/K and w

(D)
1 := 1− η is upper

bounded by

O

(√
T logK +

√
T

logK
log T

)
. (8)

Further, the regret with respect to the distribution D over the experts is con-
stant.

This result is also applicable to the case where one of the experts per-
forms well in some particular settings (e.g., i.i.d. payoffs). If D concentrates
all probability mass to this particular expert, D-Prod is guaranteed to per-
form basically as good as this expert in the specified settings.

The background of the development of D-Prod is a trade-off between the
performance with respect to the best expert and the regret with respect to the
average over all experts. Indeed, so-called difference algorithms whose experts’
weights in the two experts case (i.e., K = 2) only depend on the difference
of the experts’ losses can be shown to cannot have small regret in both cases.
More precisely, the product of the two regret bounds is at least linear in T
as shown in Section 3 of Even-Dar et al. (2008). For example, a difference
algorithm having regret of order O(log T ) in one setting cannot have anything
better than O(T/ log T ) regret in the other setting. We note that all algorithms
we have considered so far are difference algorithms. Unlike that, D-Prod is no
difference algorithm (as it considers the performance of the special D-expert in
the weight updates) and can escape this lower bound. Even-Dar et al. (2008)
also provide some general lower bounds that hold for all algorithms showing
that any algorithm with regret of order O(

√
T ) with respect to the best expert

must have regret of at least order
√
T with respect to a fixed distribution D

over experts. Accordingly, it is not possible to improve the regret bound with
respect to the best expert of Theorem 4 to O(

√
T ) without losing the constant

regret with respect to the distribution D over the experts.
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3.3.5 (A,B)-Prod

The (A,B)-Prod algorithm suggested by Sani et al. (2014) is a meta-algorithm
that combines two learning algorithms A and B, where A is supposed to be
a general purpose algorithm with regret guarantees in every scenario, while B
is a baseline algorithm, similar to the distribution over experts for D-Prod.

Working on the meta-level, (A,B)-Prod attributes weights w
(A)
t , w

(B)
t to the

base algorithms using an update as for D-Prod, that is, weights for B remain
constant, while weights for A are updated according to

w
(A)
t := w

(A)
t−1
(
1 + η(`

(B)
t − `(A)

t )
)
, (9)

where `
(A)
t and `

(B)
t denote the loss of algorithm A and B, respectively.

Similar to the guarantees for D-Prod, the regret of (A,B)-Prod with
respect to B is constant, while the regret with respect to A is of order
O(
√
T log T ).

Theorem 5 (Sani et al., 2014) (A,B)-Prod applied with parameter η :=√
(log T )/(4T ) and initial weights w

(A)
1 := η and w

(B)
1 := 1 − η has regret

upper bounded by 2
√
T log T with respect to algorithm A, while the regret with

respect to B is bounded by the constant 2 log 2.

Using e.g. an algorithm like FTL for B one obtains constant regret with
respect to FTL, which means that for any easy case where FTL works well,
(A,B)-Prod will have similarly good performance. On the other hand, choos-
ing for A a safe algorithm with O(

√
T logK) regret guarantees will safeguard

the algorithm against sequences where FTL performs poorly. The additional
regret of order O(

√
T log T ) is the price to pay for the good performance in

easy settings.
Once more, we refer to the algorithm FlipFlop of de Rooij et al. (2014)

that combines FTL with AdaHedge (a version of Hedge with time dependent
learning rate) and whose regret can be shown to be upper bounded (apart
from a constant factor) both by the regret of FTL and AdaHedge. For a more
detailed discussion of the subtle differences between the respective performance
guarantees for FlipFlop, D-Prod, and (A,B)-Prod we refer to Section 3.1 of
Sani et al. (2014).

4 Best of Both Worlds Algorithms

4.1 Limited feedback – the bandit setting

The standard PEA setting assumes that the learner observes feedback for all
the experts’ predictions. However, there are several alternative settings with
limited feedback, the most well-known of which is the multi-armed bandit
problem that is also briefly discussed in Section 7.5 of (Schurz, 2019). The
bandit setting is usually described rather in the form of a decision problem.
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That is, the learner at time steps t = 1, 2, . . . chooses one element from a given
set of arms indexed by 1, 2, . . . ,K (corresponding to the experts in the PEA
setting). After each step she obtains (and observes) a reward for the chosen
arm, and there is no information available about the rewards of the arms not
chosen.

Note that the multi-armed bandit problem can be translated back in a
prediction setting by considering that the learner at each step chooses to follow
(the prediction of) an expert (or arm respectively) and observes the success of
this expert’s prediction. We have already mentioned that in the original PEA
setting the underlying sequence to be predicted does not matter anymore
as soon as a loss function is fixed and the goal is to minimize total regret.
Accordingly, while in the bandit setting there is usually no underlying ground
truth (as a sequence to be predicted) assumed, apart from the limited feedback
this does not make any principled difference to the PEA setting.

Note that while in the full feedback setting of PEA the FTL algorithm is
a reasonable choice, it is easy to see that in the bandit setting it will not work
well in general. Here the so-called exploration-exploration dilemma becomes a
challenge for the learner. She has to decide at each step whether to exploit
her current knowledge and keep with the best arm so far, or to explore other
arms that behaved suboptimally in past samples.

Research on bandit problems for a long time considered two different and
well-separated settings, the stochastic and the nonstochastic multi-armed ban-
dit problem. In both settings it is assumed that rewards are bounded, and in
the following we assume them to be contained in [0, 1].

4.2 Stochastic bandits

In the stochastic multi-armed bandit problem it is assumed that the rewards of
each arm i come from an unknown probability distribution over some bounded
interval with mean µi. The learner does not know the reward distributions but
is aware of operating in a stochastic setting. She competes against the optimal
mean reward µ∗ := maxi µi and the respective measure called pseudo-regret is
defined as

Tµ∗ −
T∑
t=1

µIt , (10)

where T is the considered time horizon and It is the arm chosen at step t.
As already mentioned the greedy FTL algorithm, that after initially sam-

pling each arm once chooses at each further step t the arm

It := arg max
i
r̂i (11)

that maximizes the observed average reward r̂ so far, is a risky choice. Indeed,
the optimal arm may underperform in the first few samples taken from it, and
will then not be chosen again, leading to regret linear in T . However, slight
modifications work well in practice and in theory. For example, adding a bit
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of randomization by choosing a random arm with some small probability ε
and following (11) with probability 1− ε is sufficient to obtain a well working
algorithm. While for fixed ε the regret remains linear, if ε is chosen to decrease
over time one can derive strong performance bounds (Auer et al., 2002a).
Note that the added randomization is dealing with the exploration-exploitation
dilemma in a very direct way with ε being the fraction of exploration the
algorithm conducts.

A class of simple and popular algorithms that deal with the exploration-
exploitation problem implicitly add a bonus term to the average reward r̂i of
each arm i and choose similar to (11)

It := arg max
i
r̂i + b(i, t), (12)

where the bonus term b(i, t) usually depends on the respective arm i and the
current time step t. Often the bonus term corresponds to a confidence interval
for the respective empirical mean r̂i, so that with high probability each value
r̂i + b(i, t) is larger than the true mean µi. Consequently, for the chosen arm
at step t the value r̂i + b(i, t) > µ∗. As the confidence intervals shrink with
the number of samples taken from each arm, after not too many steps with
high probability the chosen arm will be the optimal one. However, the bonus
term usually also increases slowly with t to guarantee the necessary amount of
exploration, so that the algorithm keeps sampling suboptimal arms every now
and then. The most well-known bandit algorithm in the stochastic setting is
Ucb (Auer et al., 2002a) which chooses

It := arg max
i
r̂i +

√
2 log t

ni
, (13)

where ni is the number of times arm i has been chosen so far. The bonus
term corresponds to a confidence interval6 that shrinks with the number of
samples ni but also slowly increases with t.

Theorem 6 (Auer et al., 2002a) The pseudo-regret of Ucb is bounded by∑
i:µi<µ∗

(
8 log T

µ∗ − µi
+ 1

)
.

While this bound can still be slightly improved to match a corresponding
lower bound (Lattimore, 2015), the logarithmic dependence on T cannot be
avoided. Note that the bound of Theorem 6 is problem dependent, that is, it
depends on the gaps µ∗−µi between the average reward of an optimal and any
suboptimal arm. The worst case bound applies to cases where these gaps are
of order 1√

T
, when the bound basically becomes O(

√
KT log T ). This problem

independent bound can be improved to O(
√
KT ) as shown by Audibert and

Bubeck (2010). This corresponds to the bounds that can be achieved in the
nonstochastic setting considered below.

6 More precisely to an upper confidence bound, therefore the name.



14 N.N.

4.2.1 Excursion: Simple regret

An alternative performance measure for the stochastic bandit setting with
different flavor (sometimes called pure exploration) is the following. Instead
of maximizing the sum over all rewards, the learner after a certain number of
time steps (potentially not known to the learner in advance) has to recommend
an arm she considers to be best. So-called simple regret measures the distance
between the average reward of this recommended and the true optimal arm
(Bubeck et al., 2011).

A scientist will probably not be evaluated with respect to regret over all her
hypotheses advanced in her career on a particular subject. Rather, one would
be interested in her latest hypotheses. Accordingly, for this scenario simple
regret appears to be a more suitable measure than the total regret considered
so far. Note however that this measure is only sensible under the assumption
of working in a stochastic setting.

4.3 Nonstochastic bandits

The second bandit setting considered in the literature is the nonstochastic
(sometimes also called adversarial) setting. Here there are no assumptions on
the rewards, except that they are bounded and fixed in advance (i.e., do not
change with respect to the choice of the learner). Here the goal is to compete

against the best arm in hindsight, that is, writing r
(i)
t for the reward of arm i

at step t the regret after T steps is defined as

max
i

T∑
t=1

r
(i)
t −

T∑
t=1

r
(It)
t . (14)

Several algorithms have been suggested in this setting. One of the first was
Exp3 (Auer et al., 2002b) that uses exponential weights similar to the algo-
rithms we have seen in the PEA setting. More precisely, initializing weights

w
(i)
1 associated with each arm i to 1, EXP3 with parameter η computes prob-

abilities

p
(i)
t := (1− η)

w
(i)
t∑
i w

(i)
t

+
η

K
,

according to which the arm in step t is chosen. Afterwards, weights are updated

for the chosen arm i taking into account the observed reward r
(i)
t according to

w
(i)
t+1 := w

(i)
t exp(ηr

(i)
t /p

(i)
t ), (15)

while for all other arms w
(i)
t+1 := w

(i)
t .

Although compared to the PEA setting the learner receives much less in-
formation, regret bounds with respect to the best fixed arm in hindsight are
still of order O(

√
T ), only the dependence on the number of arms K is slightly

worse.
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Theorem 7 (Auer et al., 2002b) The expected regret of Exp3 using pa-

rameter η = min
{

1,
√

K logK
(e−1)T

}
is bounded by

2
√

(e− 1)KT logK.

While the parameter setting in Theorem 7 assumes knowledge of T the
variant Exp3.1 uses time dependent parameters ηt and achieves the same
regret bounds with only a slightly larger constant (Auer et al., 2002b). Auer
et al. (2002b) also give lower bounds that show that any algorithm will suffer
regret at least of order

√
KT . The gap between this lower bound and the upper

bound of Theorem 7 can be closed. That is, there are algorithms that get rid of
the logarithmic factor in the bound of Theorem 7, see (Audibert and Bubeck,
2010) for further details. Note that the regret of order O(

√
KT ) corresponds

to the regret bounds that are not problem dependent in the stochastic setting.

4.4 Best of both worlds algorithms

Only recently, algorithms have been proposed whose goal is achieve the best
of both worlds, that is, the best possible bounds in the stochastic as well
as the nonstochastic setting. This corresponds to the question of adaptive
algorithms in the PEA setting that we have considered in Section 3. Note that
any algorithm for the nonstochastic setting of course can be deployed in the
stochastic setting as well, giving regret bounds of order O(

√
KT ) specified

in the previous section. However, if one wants to obtain logarithmic bounds
in stochastic settings (cf. Section 4.2), one has to apply more sophisticated
algorithms that e.g. constantly check whether they are in a stochastic domain.
Such algorithms that are robust in an induction-hostile nonstochastic setting
on the one hand but on the other hand manage to exploit the induction-
friendly stochastic setting have been first proposed by Bubeck and Slivkins
(2012). The regret bounds that hold for their Sao algorithm are summarized
in the following theorem.

Theorem 8 (Bubeck and Slivkins, 2012) The pseudo-regret of Sao in
stochastic settings is upper bounded by

O

(
K

log2 T

∆
logK

)
,

where ∆ := µ∗ −maxi:µi<µ∗ µi is the gap between best and second best mean
reward.

The expected regret of Sao in adversarial settings is upper bounded by

O

(√
KT log

3
2 (T ) logK

)
.
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Comparing the bounds of Theorem 8 to those of Theorems 6 and 7, it
can be seen that the former do not quite achieve the best possible bounds in
both settings. Indeed while the bound on the expected regret in the adversar-
ial setting has an additional polylogarithmic factor in T , the bound for the
stochastic setting is also polylogarithmic in T .

These bounds have been complemented by Auer and Chiang (2016) whose
Sapo algorithm can be shown to be best possible in the nonstochastic setting
and have near-optimal pseudo-regret7 in the adversarial setting.

Theorem 9 (Auer and Chiang, 2016) The pseudo-regret of Sapo in
stochastic settings is upper bounded by

O

(∑
i

log T

µ∗ − µi

)
.

Its pseudo-regret in adversarial settings is upper bounded by

O(
√
TK log T ).

Auer and Chiang (2016) also show that no algorithm is able to combine the
pseudo-regret guarantees of Theorem 6 in the stochastic setting with an upper
bound on the expected regret of

√
KT in the adversarial setting. We note that

similar results are available for the pure exploration setting of Section 4.2.1
(Abbasi-Yadkori et al., 2018).

While the algorithms Sao and Sapo are explicitly defined to work well in
stochastic and adversarial environments, similarly to some of the approaches
we have seen for the PEA setting in Section 3, Agarwal et al. (2017) have pro-
posed a meta-algorithm called Corral that combines various bandit algorithms.
Obviously, due to the limited feedback making combinations of bandit algo-
rithms work is a bigger challenge than in the PEA setting. Still, under some
stability assumptions on the base algorithms one can show regret bounds for
Corral that depend on the regret of the best base algorithm as well as on the
number of base algorithms. It should be noted however that in order to take
full advantage of the combination power of Corral it is necessary to know in
advance the regret guarantee of the best base algorithm in the application
scenario. For a detailed discussion and various applications to more general
decision problems we refer to (Agarwal et al., 2017).

5 Changing Environments

The original PEA setting as well as the limited feedback nonstochastic bandit
setting do not make any assumptions on the sequence to be predicted or the
reward (or loss) sequences of the underlying arms, respectively. Accordingly,
they already subsume changing environments. However, the regret usually

7 This is a slightly weaker notion than that of expected regret, cf. e.g. Section 1 of Bubeck
and Cesa-Bianchi (2012) for details.
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is considered with respect to the best fixed arm in hindsight, whereas any
adaptive algorithm would change between arms. As has already been observed
by Bubeck and Cesa-Bianchi (2012) the notion of (pseudo-)regret in the case
of nonstationary reward sequences can become practically vacuous e.g. if the
total reward of any fixed arm is small. Accordingly, one can try to compete
against the best way to follow an arm for a certain time period and is allowed
to change arms at most S times in total. Auer et al. (2002b) have considered
this problem and suggested a variant of Exp3 called Exp3.S that achieves
regret of order O(

√
SKT log(KT ) using S to tune the algorithm.

Similarly, in the stochastic setting, it is easy to define a changing envi-
ronment where the arms’ distributions change at certain time steps. With
the number of total changes S known in advance, one can simply apply the
Exp3.S algorithm to achieve the mentioned regret guarantees. Only recently,
an algorithm was suggested by Auer et al. (2019) that similar to the best of
both worlds algorithms discussed in Section 4.4 tries to detect changes by it-
self and does not need to know the number of changes in advance. That way,
the algorithm can be shown to achieve regret upper bounded by a term of
order O(

√
SKT log T ). We refer to (Warmuth and Koolen, 2014) for more on

so-called shifting experts and some related open problems.
We note that here we only mentioned settings with bandit feedback. For the

respective problem in the PEA setting we refer to Chapter 5 of (Cesa-Bianchi
and Lugosi, 2006) as well as Sections 7.3 and 9.2.5 of (Schurz, 2019).

6 Conclusion

While we naturally concentrated on sequence prediction models and the re-
lated problem settings like the multi-armed bandit problem, the mathematics
literature is full of online settings where the goal is to make good decisions with
having access to only part of the problem that becomes known only step by
step. Typical settings include allocation, matching, scheduling, or packing to
name a few. For an overview of techniques and typical results see e.g. Borodin
and El-Yaniv (1998). It is notable that the weighted majority method is ap-
plicable to a wide range of some of these online problems and has been used
and reinvented on several occasions, see (Arora et al., 2012) for an overview.
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Nicolò Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. Improved second-
order bounds for prediction with expert advice. Mach. Learn., 66(2-3):
321–352, 2007.

Steven de Rooij, Tim van Erven, Peter D. Grünwald, and Wouter M. Koolen.
Follow the leader if you can, hedge if you must. J. Mach. Learn. Res., 15
(1):1281–1316, 2014.



Adaptive algorithms for meta-induction 19

Eyal Even-Dar, Michael J. Kearns, Yishay Mansour, and Jennifer Wortman.
Regret to the best vs. regret to the average. Mach. Learn., 72(1-2):21–37,
2008.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. J. Comput. Syst. Sci., 55
(1):119–139, 1997.

Yoav Freund and Robert E. Schapire. Adaptive game playing using multi-
plicative weights. Games and Economic Behavior, 29(1–2):79–103, 1999.

John Langford and Bianca Zadrozny. Relating reinforcement learning per-
formance to classification performance. In Machine Learning, Proceedings
of the Twenty-Second International Conference (ICML 2005), volume 119
of ACM International Conference Proceeding Series, pages 473–480. ACM,
2005.

Tor Lattimore. Optimally confident UCB : Improved regret
for finite-armed bandits. CoRR, abs/1507.07880, 2015. URL
http://arxiv.org/abs/1507.07880.

Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm.
Inf. Comput., 108(2):212–261, 1994.

Amir Sani, Gergely Neu, and Alessandro Lazaric. Exploiting easy data in
online optimization. In Advances in Neural Information Processing Systems
27, NIPS 2014, pages 810–818, 2014.

Gerhard Schurz. Hume’s Problem Solved. The Optimality of Meta-Induction.
MT Press, 2019.

Manfred K. Warmuth and Wouter M. Koolen. Open problem: Shifting experts
on easy data. In Proceedings of The 27th Conference on Learning Theory,
COLT 2014, volume 35 of JMLR Workshop and Conference Proceedings,
pages 1295–1298. JMLR.org, 2014.


