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Abstract

Markov chains naturally appear in Markov decision processes (MDPs), as in
an MDP each policy induces a Markov chain. In the context of reinforcement
learning the underlying MDP is unknown and its transition probabilities
have to be estimated. The deviation of the corresponding estimates from
the true values will cause an error that can be bounded by perturbation
bounds for the induced Markov chains. This paper investigates respective
questions of Markov chain estimation, approximation, and aggregation which
are of interest in MDP and reinforcement learning applications. The focus
will be put on error bounds involving transition parameters such as mean
first passage times, Kemeny’s constant, or the diameter.
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1. Introduction

Markov decision processes (MDPs) are generalizations of Markov chains
that introduce a decision making component which predestine them as model
for various applications. MDPs have been introduced by Richard Bellmann
in the 1950s, however special cases have been considered in the context of
game theory before, cf. Kallenberg (2016). In the meantime, MDPs have been
used in numerous applications as suitable representation for various problem
settings. Since beginning of the 1980s, MDPs have also become the standard
framework for modeling an unknown environment in reinforcement learning,
where a learning agent aims to learn some particular behavior. The learning
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process by trial and error is considered to be special as the learner has to
generate the data from which is learned by herself. Thus, particular attention
has been turned to the balance of exploitation (that is, playing the option
one considers best so far) and exploration (looking for a better option), cf.
e.g. Fruit (2019).

In the following, we consider various natural questions on MDPs and rein-
forcement learning that can be dealt with by investigation of suitable under-
lying simpler Markov chain processes. Thus, we will consider basic properties
of Markov reward processes (i.e., Markov chains with an additional reward
function) as well as questions of estimation, approximation, and aggregation
in Markov chains and MDPs. On the other hand, we will also show how re-
sults derived for the more general MDP setting can provide new insights for
Markov chains.

Following basic definitions for Markov chains in this section, we will first
study Markov reward processes in Section 2. Section 3 introduces the MDP
model. Sections 4 and 5 then will consider questions of approximation, while
Section 6 deals with aggregation. The final Section 7 illustrates how the
concepts and results of the preceding sections can be applied to the restless
bandit problem and also introduces a more general notion of approximation.

1.1. Markov Chain Preliminaries

Basic Definitions. We start with introducing some notation, fixing the used
terminology, and recalling some basic facts about discrete-time Markov
chains.1 We will usually consider time homogeneous Markov chains, which
we write as triples (S,P, ν) of state space S, transition matrix P, and initial
distribution ν over S. Sometimes we skip the initial distribution if it is clear
from context or does not matter, often we replace it with a fixed initial state.
For the entries in row s and column s′ of the matrix P, that is, the transition
probability from s to s′, we usually write2 p(s′|s). That is, writing S1, S2, . . .
for the sequence of random states generated by the Markov chain, we have
for all t > 1

P[St = s′ |St−1 = s, St−2 = s′′, . . . , S1 = s′′′] = P[St = s′ |St−1 = s] =: p(s′|s).

1As reference any textbook on Markov chains such as (Norris, 1998) will suffice.
2The notation p(s, s′) is more common, however p(s′|s) is more consistent with the

MDP notation used later on.

2



Similarly, we write pt(s′|s) for the t-step transition probability, which is the
respective entry in the power matrix Pt.

Transition Structure. Two states s, s′ in a Markov chain are communicating if
s can be reached from s′ with positive probability after a finite number of t ≥
0 steps and vice versa. Note that any state communicates with itself so that
we can consider the equivalence classes with respect to the relation of being
communicating, which we call the (irreducible) classes of the Markov chain.
A Markov chain is irreducible if its state space constitutes an irreducible
class.

A state s is recurrent if it will be visited again with probability 1 when
starting in s. Other states are called transient. A class of recurrent states
is also called recurrent. In the following we will assume the state space to
be finite, so that any Markov chain with a single irreducible class is also
recurrent.

A Markov chain is called unichain if it consists of a single irreducible class
and a (possibly empty) set of transient states. When there is more than one
irreducible class the Markov chain is called multi-chain.

For general multi-chain Markov chains with state space S we sometimes
refer to their transition structure meaning the graph with the vertex set S
and directed edges between states s, s′ for which p(s′|s) > 0. This graph
sometimes is called the graph of the Markov chain, cf. Woess (2009).

Periodicity. The period of a state s is the greatest common divisor of all t for
which pt(s|s) > 0. States in the same irreducible class have the same period.
We call such a class periodic if it has period > 1 and otherwise aperiodic and
use this terminology accordingly also for irreducible Markov chains.

Stationary Distribution. The Markov chains we will deal with may be peri-
odic so that the powersPt of the transition matrix will not converge. Thus, we
consider the Cesaro limit limT→∞

1
T

∑T
t=1P

t instead. For an irreducible Mar-
kov chain this sum converges to a limiting matrix with identical rows µ, which
correspond to the unique stationary distribution3 µ satisfying µ⊤P = µ and∑

s∈S µ(s) = 1.

3We write the stationary distribution µ and other functions S → R sometimes as
(column) vector µ = (µ(s))s∈S using bold variables.
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Measuring Distance. In the following we will also be interested in the distance
of the stationary distributions of two Markov chains over the same state
space. For that purpose we introduce various distance measures for vectors,
distributions, and matrices. First we recall the definition of the ∞-norm,
that is, ∥µ−µ′∥∞ := maxs |µ(s)−µ′(s)| for vectors µ,µ′ and ∥P−P′∥∞ :=
maxs

∑
s′ |p(s′|s)−p′(s′|s)| for (transition) matricesP,P′. Further, for vectors

µ,µ′ the 1-norm is defined as ∥µ−µ′∥1 :=
∑

s |µ(s)−µ′(s)|. Finally, we will
also consider the total variational distance, which for the discrete domains
we will consider is simply given by dTV (µ,µ

′) = 1
2
∥µ− µ′∥1.

Mean First Passage Times. First passage times (sometimes also called hitting
times) are stopping times for first visits in a given state (or more generally a
set of states). The mean first passage time τ(s, s′) for two different states s, s′

is defined as the expected number of steps it takes to reach s′ for the first
time when starting in s. Further, we let τ(s, s) be the mean return time for
state s, that is, the expected number of steps it takes to return to state s for
the first time when starting in s.

Mixing Times. Mixing times measure the time to stationarity of a Markov
chain. Accordingly, we define the ε-mixing time of a Markov chain to be

Tmix(ε) := min
{
t ∈ N

∣∣ max
s

∥µt
s − µ∥1 ≤ ε

}
,

where µt
s is the distribution after t steps when starting in state s. For defining

the mixing time of a Markov chain one chooses an arbitrary ε, e.g.4 Tmix :=
Tmix(

2
e
). It can be shown (eq. 4.36 of Levin et al., 2006) that

Tmix(ε) ≤
⌈
log2

(
1
ε

)⌉
· Tmix. (1)

2. Prologue: Markov Reward Processes

Before we introduce the general MDP framework, we start with the simp-
ler notion of Markov reward process, which on one hand is a simple extension
of a Markov chain, while being a special case of an MDP on the other hand.

4With this choice our mixing time coincides with that of Paulin (2015).
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2.1. Definition and Average Reward

A Markov reward process is obtained by adding random rewards to each
state of a discrete-time, time-homogeneous Markov chain.

Definition 1. A Markov reward process (MRP) (S, r,P, ν) consists of a
Markov chain (S,P, ν) and reward distributions in each state s in S with
mean r(s).

In the following we assume that rewards are bounded and more precisely
consider for the sake of simplicity that they are taken from the interval [0, 1].
For bounded rewards this can always be achieved by renormalization.

Given an MRP, one is usually interested in the random rewards Rt accu-
mulated in steps t = 1, 2, . . .. If Rt is collected at step t this means that it is
drawn from the reward distribution of state St and the respective expected
value is r(St). The St are created by the underlying Markov chain and we
will consider the expectation E[r(St)] with respect to this random process.
The respective expected finite horizon reward after T steps is given by

vT (s) :=
T∑
t=1

E[Rt |S1 = s] =
T∑
t=1

E
[
r(St)

∣∣S1 = s
]
,

while for T → ∞ one can compute the average reward defined as

ρ(s) := lim
T→∞

1

T

T∑
t=1

E
[
r(St)

∣∣S1 = s
]
, (2)

taking into account that the average reward may be different for different
initial states s. However, if the Markov chain underlying the MRP is irredu-
cible then the average reward ρ = ρ(s) is independent of the initial state s
and can also be computed via the stationary distribution µ of the underlying
Markov chain. More precisely, in this case it holds by the ergodic theorem
(see e.g. Theorem 1.10.2 of Norris, 1998) that

ρ = µ⊤r =
∑
s∈S

µ(s) r(s). (3)

That is, the average reward ρ is what one obtains in the stationary distribu-
tion.
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2.2. The Bias

According to (3) the time to stationarity of the underlying Markov chain
is related to the question of how long it takes until the average reward is
reached, which is obviously an important question in many applications. Ho-
wever, the structure of the reward functions also plays a crucial role here.
For example, if all rewards are the same, convergence to the stationary distri-
bution is not important for reaching the average reward. This is made more
precise by the notion of bias. In MRPs in which the underlying Markov chain
is aperiodic the bias λ(s) of a state s is defined as

λ(s) = E
[ ∞∑

t=1

(
r(St)− ρ(St)

) ∣∣∣S1 = s

]
. (4)

Thus, the bias λ(s) measures the difference between the mean accumulated
reward and the average reward ρ when starting in state s. For periodic chains
one has to consider the Cesaro limit and can define the bias more generally
as

λ(s) = lim
T→∞

1

T

T∑
τ=1

E
[ τ∑

t=1

(
r(St)− ρ(St)

) ∣∣∣S1 = s

]
. (5)

The difference λ(s) − λ(s′) for two states s, s′ intuitively quantifies the
(dis-)advantage in accumulated reward of starting in state s over starting
in state s′. This is exemplified in the following example, which is a slightly
modified version of Example 8.2.1 of Puterman (1994).

Example 2. Consider the periodic two state MRP with S = {0, 1}, transition
matrix

P =

(
0 1
1 0

)
,

and deterministic rewards r(0) = 0, r(1) = 1. The average reward obviously
is 1

2
. However, depending on the initial state the observed reward sequences

will be different:

initial state 0: 0, 1, 0, 1, 0, 1, 0, 1, . . .

initial state 1: 1, 0, 1, 0, 1, 0, 1, 0, . . .

Accordingly, the corresponding sequences of accumulated rewards are

initial state 0: 0, 1, 1, 2, 2, 3, 3, 4, . . . (6)

initial state 1: 1, 1, 2, 2, 3, 3, 4, 4, . . . (7)
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Starting in state 1 thus yields an advantage that can be quantified by the bias.
For computing it according to (5) we have to compare the actual rewards to
the average reward 1

2
. More precisely, we consider the sequence of accumulated

average rewards, which is

1
2
, 1, 3

2
, 2, 5

2
, 3, 7

2
, 4, . . . .

Subtracting this sequence from the sequences of accumulated rewards in (6)
and (7) gives the following sequences:

initial state 0: − 1
2
, 0,−1

2
, 0,−1

2
, 0,−1

2
, 0, . . .

initial state 1: + 1
2
, 0,+1

2
, 0,+1

2
, 0,+1

2
, 0, . . .

Computing the average value of these sequences gives the bias in each state,
that is, λ(0) = −1

4
and λ(1) = 1

4
. The difference λ(1) − λ(0) = 1

2
is the

average difference of the sequences of accumulated reward in (6) and (7).

According to the definition of the bias, it can also be used to bound the
difference between the average reward and the actual accumulated reward
over a finite number of T steps.

Proposition 3. In an irreducible and aperiodic MRP it holds that

|vT (s)− Tρ| ≤ span(λ) := max
s′

λ(s′)−min
s′

λ(s′).

Proof. As the underlying chain is irreducible, ρ is constant and we can re-
write (4) as

λ(s) = E
[ T∑

t=1

(
r(St)− ρ

) ∣∣∣S1 = s

]
+ E

[ ∞∑
t=T+1

(
r(St)− ρ

) ∣∣∣S1 = s

]

= vT (s)− Tρ+ E
[ ∞∑

t=T+1

(
r(St)− ρ

) ∣∣∣S1 = s

]
.

Since

min
s′

λ(s′) ≤ E
[ ∞∑

t=T+1

(
r(St)− ρ

) ∣∣∣S1 = s

]
≤ max

s′
λ(s′),

the proposition follows.

Proposition 3 holds more generally also for MRPs that are just unichain
and may be periodic, cf. Exercise 38.17 of Lattimore and Szepesvári (2020),
p. 479.
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2.3. Bounding the Bias Span

Interestingly, the term span(λ), which we will refer to as the bias span
in the following, can be upper bounded in terms of the mean first passage
times τ(s, s′). Intuitively, state s cannot have an accumulated advantage of
more than τ(s, s′) over state s′: This is the maximal expected time to reach s′

from s and per step one cannot lose more than the maximal reward of 1.

Proposition 4. In an irreducible and aperiodic MRP it holds that

λ(s)− λ(s′) ≤ τ(s, s′).

Proof. Let Ts,s′ be the random time of the first visit to state s′ when starting
in state s. Then we can rewrite the definition of the bias λ(s) in (4) as

λ(s) = E
[ Ts,s′∑

t=1

(
r(St)− ρ

) ∣∣∣S1 = s

]
+ E

[ ∞∑
t=Ts,s′+1

(
r(St)− ρ

) ∣∣∣S1 = s

]
.

The second term is λ(s′) and since the rewards r(St) are assumed to be
in [0, 1], it follows that

λ(s)− λ(s′) = E
[ Ts,s′∑

t=1

(
r(St)− ρ

) ∣∣∣S1 = s

]
≤ τ(s, s′),

As Proposition 3, also Proposition 4 holds more generally for periodic
MRPs, cf. Exercise 38.13 of Lattimore and Szepesvári (2020), p. 478.

2.4. The Poisson Equation

The Poisson equation (cf. Theorem 8.2.6 of Puterman, 1994)

ρ+ λ = r+Pλ (8)

formalizes the connection between the average reward, the individual rewards
in the single states, and the bias. However, the bias λ is determined by (8)
only up to an additive constant. In addition, λ as defined in (5) has to satisfy
µ⊤λ = 0, cf. eq. 8.2.2 and Theorem 8.2.6 c of Puterman (1994).
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3. Markov Decision Processes

The notion of Markov decision process (MDP) generalizes MRPs as fol-
lows. At each time step t = 0, 1, 2, . . . one observes the current state St and
chooses an action At from a given set of available actions A. After choo-
sing At one obtains a random reward Rt and observes the transition to the
next state St+1. The transition probabilities as well as the reward distribu-
tions now depend not only on the state St but also on the chosen action At.
The precise definition of Markov decision process we are going to work with
is the following.

Definition 5. A Markov decision process (MDP) M = (S,A, r, p, S1) con-
sists of

(i) a set of states S,

(ii) a set of actions A available in each state s in S,

(iii) the mean reward functions r(s, a) that specify the expected value of the
random reward for choosing action a in state s,

(iv) the transition probability distributions p(·|s, a) that for each s ∈ S and
a ∈ A specify the probability for a transition to a next state. That is,
when choosing action a in state s at step t the next state at step t + 1
is s′ with probability p(s′|s, a),

(v) an initial state S1 ∈ S.

There are a few variations considered in the literature. Thus, in many
applications it makes sense to have different sets of actions available in each
state. As this complicates notation, one usually tries to convert this setting
to the one given above by adding dummy actions and renaming actions if
necessary. Rewards are sometimes considered simpler only to be state depen-
dent, or more generally to also depend on the next state. Further, just as for
Markov chains, the initial state often more generally can be considered to be
an initial distribution over S. None of these variations makes a big difference
however and results usually can be easily adapted.

Although MDPs with continuous state-action space are important in prac-
tice, in the following we will consider only the setting in which there are fini-
tely many states and actions. As for Markov reward processes we are further
going to assume that the support of the reward distributions is contained in
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the unit interval [0, 1]. Note that an MRP can be considered to be an MDP
whose action space consists of a single action.

3.1. Stochastic Process and Policies

In the following, we write St, At, Rt for the state, the action, and the
reward obtained at step t, respectively. The history Ht at time step t is the
sequence of states, actions, and rewards up to and including step t, that
is, Ht = (S1, A1, R1, . . . , St−1, At−1, Rt−1, St). According to the definition we
have for t = 1, 2, . . .

P[St+1 = s′|Ht, At] = P[St+1 = s′|St = s, At = a] = p(s′|s, a),
E[Rt|St = s, At = a] = r(s, a).

Thus, ignoring the rewards one obtains for a given sequence of actions
A1, A2, . . . a time-inhomogeneous Markov chain. Obviously there are many
ways to obtain an action sequence, which are subsumed under the term policy.
Thus, a policy is a function that maps histories to (probability distributions
over) actions. Usually however simpler sub-classes of policies are considered.
A policy π which is independent of time t is called stationary and it is
deterministic if it maps states to actions, that is, π : S → A. As we will
see, for the usual purposes it is sufficient to consider stationary deterministic
policies, which choose the same action whenever in the same state. Note that
any stationary deterministic policy induces an MRP.

3.2. Transition Structure and Diameter

Before turning our focus to the rewards and the respective optimization
criteria, we consider the transition structure of an MDP. In general, just like a
Markov chain an MDP can be multichain, that is, at least one policy induces
a Markov chain that is multichain. In reinforcement learning a learner has to
find an optimal policy (with respect to criteria that will be introduced below)
in an environment modeled by an MDP, however unknown to her. When
learning online, that is, on the fly, she inevitably has to explore different
actions and states and will make mistakes, that is, choose suboptimal actions.
Such mistakes can be nonrecoverable when the learner ends up in a part of
the state space that gives suboptimal reward and cannot be left anymore.
While the real world is full of such examples that obviously cannot be learned
by trial and error without any further knowledge, here we will focus on MDPs
with transition structures which allow a recovery from choosing a bad action.
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Definition 6. An MDP is communicating if for any two states s, s′ there
is a policy π such that s′ is reachable from s with positive probability when
following π.

For a given MDP it can be checked in polynomial time whether it is com-
municating (Kallenberg, 2002). A common generalization of communicating
MDPs are weakly communicating MDPs, which may have some transient
states, that are visited only a finite number of times under any policy. While
it is possible to consider this more general setting, transient states complicate
some matters so that in the following we will assume MDPs to be communi-
cating.

In a communicating MDP any state can be reached from any other state.
The maximal expected time it takes to connect any two states is the diameter,
which is a generalization of the respective concept in graphs.

Definition 7. Given an MDP M , let τπ(s, s
′) be the expected time it takes

to reach s′ from s when following π. The diameter D of M is defined as the
maximal expected time it takes to connect any two states in M , that is,

D := max
s ̸=s′∈S

min
π

τπ(s, s
′).

Obviously, the diameter will be finite if and only if the MDP is commu-
nicating. Note that the policy to reach a state s′ from another state s will
in general be specific to the states s, s′. That is, there need not be a single
policy connecting any two states, except it is allowed to be randomized. Ac-
cordingly, an MDP with finite diameter in general will be multichain, i.e.,
some policies will induce multichain Markov chains where certain states are
separated from each other.

A much stronger assumption on an MDP than having finite diameter
is that each (stationary deterministic) policy induces an irreducible Markov
chain. Such an MDP is called ergodic (or recurrent).
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3.3. Optimization Criteria

For a given MDP one is usually interested in maximizing reward.5 There
are different criteria one may assume. The discounted reward

∞∑
t=1

γt E[r(St, At)] (9)

for 0 ≤ γ < 1 is commonly used, as discounting is the easiest way to take
care of convergence of the infinite sum. The downside is that rewards in
the far future do not have much influence anymore. Accordingly, one can
alternatively consider the finite horizon reward

T∑
t=1

E[r(St, At)]

for some T . Here we consider the average reward

lim
T→∞

1

T

T∑
t=1

E[r(St, At)], (10)

which we think is the most natural criterion and also the one where Markov
chain theory is most useful.6 However, optimization with respect to average
reward is also quite subtle for various reasons. First of all, the limit in (10)
need not exist for all policies, cf. Example 8.1.1 of Puterman (1994) for a
case of an MDP and a history-dependent policy, where the lim inf and the
lim sup counterparts of (10) do not coincide. Luckily, the limit exists at least
for stationary policies (Proposition 8.1.1 of Puterman, 1994) so that for an
initial state s the average reward of a stationary policy π can be defined as

ρ(π, s) = lim
T→∞

1

T

T∑
t=1

E[r(St, π(St)|S1 = s].

5In the operations research community it is quite common to equivalently consider
costs to be minimized instead.

6Actually, by modifying the MDP adding a state with specific transition probabilities
one can also simulate the discounted reward criterion in terms of an average reward MDP,
cf. Sec. 5.4 of Norris (1998). Also note that Proposition 3 shows that the difference between
finite horizon and average reward can be bounded.
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Note that the average reward coincides with that of the MRP induced by
policy π, cf. eq. (2). An optimal stationary deterministic policy π∗ has optimal
average reward

ρ∗ = max
π:S→A

ρ(π, s),

which in a communicating MDP is independent of the initial state s and just
like (3) can be written in terms of the stationary distribution µπ∗ induced
by π∗ as

µ⊤
π∗rπ∗ =

∑
s∈S

µπ(s) r(s, π
∗(s)).

It turns out that the optimal average reward given by stationary deter-
ministic policies cannot be increased when considering more general (i.e.,
randomized or history-dependent) policies.

Theorem 8 (Theorem 9.1.8 of Puterman, 1994). In any communicating
MDP with finite state and action space there is a stationary deterministic
optimal policy.

Accordingly, in the following if not mentioned otherwise, by a policy we
shall mean a stationary and deterministic policy. We note that in general
the optimal policy need not be unique even when only considering stationa-
ry deterministic policies. To complicate matters, in terms of total collected
reward one optimal policy may perform better than others as the following
example demonstrates.

Example 9. Consider a two state MDP with states 0 and 1 giving inde-
pendent of the chosen action deterministic reward 0 and 1, respectively. We
assume that state 0 is transient, while state 1 is absorbing, that is, it can-
not be left anymore. More precisely, there are two actions a and a′, which
coincide in state 1 and have different transition probabilities in state 0. The
respective transition matrices under a and a′ are given by

Pa =

(
0 1
0 1

)
, Pa′ =

(
0.99 0.01
0 1

)
.

For the average reward only the reward obtained in the absorbing state mat-
ters, so that both policies π, π′ with π(0) = a and π(0) = a′ give optimal
average reward 1. However, obviously policy π is preferable as the absorbing
high reward state 1 is reached much faster.
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Examples like this have led to more refined optimality criteria such as
bias optimality (Lewis and Puterman, 2002) and Blackwell optimality (Hor-
dijk and Yushkevich, 2002). The latter implies the former and also presents
another connection between average and discounted reward: A Blackwell op-
timal policy gives optimal discounted reward as defined in (9) for all values
of γ > γ0 for some 0 < γ0 < 1.

While here we assume only finite MDPs, when state and action space
are infinite the existence of an optimal policy usually depends on further
properties of the MDP. Respective necessary and sufficient conditions are the
subject of ongoing research in operations research. In reinforcement learning
it is usually simply assumed that such an optimal policy exists.

3.4. Optimality Equations and Algorithms

By Theorem 8 there is always a stationary deterministic policy giving
optimal average reward. Since there are only finitely many such policies, in
principle one could obtain an optimal policy by evaluating the induced MRP
for each single policy. As there are however |A||S| policies this approach is
prohibitive in practice.

A better way to find an optimal policy is via so-called optimality equati-
ons. For communicating MDPs this system of equations is given by

ρ+ λ(s) = max
a

{
r(s, a) +

∑
s′

p(s′|s, a)λ(s′)
}

(11)

for each state s. Writing ra and Pa for the mean reward vector and the
transition matrix under action a, respectively, in vector notation one has

ρ+ λ = max
a

{
ra +Pa λ

}
, (12)

which is known as the Bellman (optimality) equation. Under our assumption
that the MDP is communicating the optimal average reward is independent of
the initial state so that the vector ρ will consist of identical entries ρ, i.e., ρ =
ρ1, where 1 is the vector with all entries 1. Note that the Poisson equation (8)
for MRPs is a special case of (12). One can show that in finite communicating
MDPs there is always a solution (ρ, λ) to (12), cf. Theorem 9.1.4 of Puterman
(1994). Further, in this case ρ is the optimal average reward, cf. Theorem 9.1.3
of Puterman (1994). Analogously to the Poisson equation λ is not unique and
if (ρ, λ) is a solution of (12) so is (ρ, λ+ c). This does not mean however that
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λ is always unique up to translation, cf. Exercise 38.11 on p. 478 of Lattimore
and Szepesvári (2020). Importantly, from a solution (ρ, λ) of (11) one can
construct an optimal stationary deterministic policy π∗ by choosing in all
states s

π∗(s) := argmax
a

{
r(s, a) +

∑
s′

p(s′|s, a)λ(s′)
}
,

cf. Theorem 9.1.7 of Puterman (1994). While the Bellman equation allows to
find a policy that gives optimal average reward, there may be however other
policies π that give optimal average reward ρ, which with the respective
bias λπ does not satisfy (12), cf. Example 8.4.3 of Puterman (1994).

Using the Bellman equation an optimal policy can be computed by linear
programming, for details see Sections 8.8, 9.3, and 9.5.2 of (Puterman, 1994).
However, there are more practical alternatives like policy iteration or value
iteration. For the former we refer to Sections 8.6, 9.2, and 9.5.1, for the latter
to Sections 8.5, 9.4, and 9.5.3 of (Puterman, 1994).

We conclude with the following result, which shows that for a solution of
the Bellman equation one obtains a generalization of Proposition 4 to MDPs.

Proposition 10 (Lemma 38.3 of Lattimore and Szepesvári, 2020). Let (ρ, λ)
be a solution of the Bellman equation (11) in a communicating MDP with
rewards in [0, 1]. Then the bias span of λ is bounded by the diameter.7

4. Markov Chain and MDP Approximation

In the context of reinforcement learning, the learner is usually considered
to have no or only very limited knowledge of the underlying MDP. In parti-
cular, the rewards and transition probabilities are unknown and have to be
estimated from samples taken when interacting with the MDP.

When the learner has observations of rewards and transition probabili-
ties for each state-action pair, she can compute corresponding estimates and
thus obtains an empirical estimate of the underlying MDP. Obviously, it is
an interesting and practically relevant question how well this empirical MDP
approximates the true one. Naturally, similar questions have also been con-
sidered in the Markov chain literature often under the notion of perturbation
bounds.

7More generally, for arbitrary rewards not necessarily bounded in [0, 1], it holds that
span(λ) ≤ D span(r), cf. Bartlett and Tewari (2009).
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4.1. Perturbation Bounds for Markov Chains

The common setting for perturbation bounds is the following. Given an
irreducible Markov chain with transition matrix P and a perturbed and al-
so irreducible Markov chain with transition matrix P′, the question is how
well does the stationary distribution µ′ computed from P′ approximate the
true stationary distribution µ. Usually, one obtains results that bound the
distance ∥µ− µ′∥p in terms of ∥P−P′∥q.

The assumption of both considered Markov chains being irreducible seems
quite strong when thinking of applications to MDPs and reinforcement lear-
ning. Recall in particular that even in communicating MDPs not all policies
induce an irreducible Markov chain. Actually, the perturbation results hold
more generally in arbitrary Markov chains having the same recurrent classes
and starting in the same initial state. While this is still difficult to guarantee
in the reinforcement learning setting, one is usually interested in the opti-
mal policy which in communicating MDPs always induces a unichain Markov
chain with a single recurrent class. Moreover, we shall see that perturbation
results hold under weaker conditions than usually assumed in the literature.

Before taking a closer look at Markov chain perturbation we briefly men-
tion a different, yet related line of research that considers sensitivity as a
derivative. Caswell (2013) investigates not only the sensitivity of the sta-
tionary distribution but also other parameters of the Markov chain such as
mean first passage times or Kemeny’s constant (cf. below). Interesting ap-
plications in ecology and demography are also provided and investigated in
more depth in (Caswell, 2019).

4.1.1. Condition Numbers and Perturbation

Perturbation bounds not only depend on the distance ∥P − P′∥q but
also on an additional parameter of the true Markov chain8 called condition
number by Cho and Meyer (2001). Cho and Meyer (2001) compare various
perturbation bounds in the literature and note that most of the considered
condition numbers either depend on the group inverse9 of I − P or on the
fundamental matrix (I − P + 1µ⊤)−1. A more intuitive condition number

8Actually, the situation is symmetric, so that one can instead also consider a parameter
of P′ instead.

9The group inverse of a matrix A is the unique matrix A# for which AA#A = A,
A#AA# = A#, and AA# = A#A.
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defined in terms of mean passage times has been introduced by Cho and
Meyer (2000).

Theorem 11 (Cho and Meyer, 2000). Let P, P′ be the transition matrices of
two irreducible Markov chains with stationary distributions µ, µ′, respectively.
Then

|µ(s)− µ′(s)| ≤ maxs′ ̸=s τ(s
′, s)

2τ(s, s)
· ∥P−P′∥∞.

It is well-known that τ(s, s) = 1
µ(s)

so that one immediately obtains the
following corollary.

Corollary 12. Let P, P′ be the transition matrices of two irreducible Markov
chains with stationary distributions µ, µ′, respectively. Then

∥µ− µ′∥∞ ≤ 1
2
max

s

{
µ(s)max

s′ ̸=s
τ(s′, s)

}
∥P−P′∥∞.

The double max quantity on the right hand side is reminiscent of the
definition of the diameter (cf. Definition 7), here weighted by the stationary
distribution. Actually as noted by Hunter (2005), since µ(s) ≤ 1 one also
arrives at a bound in terms of the diameter D := maxs′ ̸=s τ(s

′, s) of the
Markov chain, that is,

∥µ− µ′∥∞ ≤ 1
2
D ∥P−P′∥∞. (13)

Example 20 below presents a simple Markov chain for which the error is
indeed of order D ∥P−P′∥∞.

Hunter (2005) presents a more general perturbation bound in terms of
generalized matrix inverses that subsumes several of the bounds in the lite-
rature, including Theorem 11. Further he also investigates a few special cases
(like perturbations in a single row of the transition matrix) where improved
bounds are possible.

Beside the diameter the condition number of Corollary 12 also resembles
the parameter

η̄(s) :=
∑
s′

µ(s′) τ(s, s′). (14)

In irreducible Markov chains this quantity is actually independent of s. That
is, for all states s it holds that

η̄(s) = η̄,
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and η̄ is known as Kemeny’s constant (Kemeny and Snell, 1960). The
terms η̄(s) can be interpreted as the expected time to reach the stationa-
ry distribution in the following sense: One first picks a state s′ randomly
according to the stationary distribution and then considers how long it takes
in expectation to get there, starting in state s. While this is a neat interpre-
tation of η̄(s) it does not give an intuitive explanation why these terms are
constant, a question which has not been answered in a satisfactory way yet.
More on different interpretations and a history of Kemeny’s constant as well
as an overview of related results can be found in (Hunter, 2014).

In the following, instead of η̄ we will use the paramater η := η̄− 1, which
sometimes is referred to as Kemeny’s constant as well. It naturally arises
when setting τ(s, s) = 0 instead of 1

µ(s)
in (14), cf. Hunter (2014). Unlike

the previous perturbation results the following theorem bounds the error in
1-norm, which will be most useful for our purposes.

Theorem 13 (Hunter, 2006). Let P, P′ be the transition matrices of two
irreducible Markov chains with stationary distributions µ, µ′, respectively.
Then

∥µ− µ′∥1 ≤ η
2
∥P−P′∥∞.

While the mentioned perturbation results in the literature assume that
both Markov chains are irreducible, the results sometimes hold more gene-
rally as the following simple example demonstrates.

Example 14. Consider a general two state Markov chain with S = {1, 2}
and transition matrix

P =

(
1− p p
q 1− q

)
,

where we assume that 0 < p, q < 1. The stationary distribution is given by
µ =

(
q

p+q
, p
p+q

)
, the mean first passage times are τ(1, 2) = 1

p
, τ(2, 1) = 1

q
, and

Kemeny’s constant η = 2
p+q

. Comparing the stationary distribution µ of P

to the stationary distribution µ′ = (1, 0) of the Markov chain with transition
matrix P′ = I and initial state 1, we see that the respective error is

∥µ− µ′∥∞ = max

{
1− q

p+ q
,

p

p+ q

}
=

p

p+ q
. (15)

Although the assumptions of Corollary 12 are not satisfied since P′ is not
irreducible, it still provides a valid upper bound on the error in (15). That is,
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we have

1
2
max

s

{
µ(s)max

s′ ̸=s
τ(s′, s)

}
∥P−P′∥∞

= 1
2
max

{
q

p+ q
· 1
q
,

p

p+ q
· 1
p

}
max{2p, 2q}

=
max{p, q}

p+ q
.

The case when the initial state is 2 is of course symmetric. Similarly, we
have ∥µ− µ′∥1 = 2p

p+q
and the bound of Theorem 13 gives 2max{p,q}

p+q
.

This example is quite simple and it is an interesting question which per-
turbation bounds also hold when the perturbed Markov chain is not irredu-
cible.10 In Corollary 18 below we provide a respective generalization of the
bound in (13). Note that the perturbation bounds presented in this section
become vacuous when both Markov chains are not irreducible and condition
numbers based on mean first passage times are not finite anymore.

4.2. Markov Chain and MDP Approximations

Equipped with the perturbation results of the previous section we are
now going to derive bounds for more general MDP approximations. As Theo-
rem 13 fits our purposes best, in the following we will use this result, although
in principle other bounds could be used as well.

MDP Notation. We introduce some notation first. For an MDP M we denote
by ρ(M,π, s) the average reward of policy π in M when starting in s. If
the reward is independent of s we simply use ρ(M,π). Further, we write
ρ∗(M) for the optimal average reward of M . In case the optimal average
reward depends on the initial state s, we use ρ∗(M, s). Finally, we introduce
notation for Kemeny’s constant, the condition number used in Theorem 13.
Consider for a policy π the Markov chain induced by π on M . This Markov
chain may be multi-chain so that we write η(M,π, s) for Kemeny’s constant

10Recently, we were able to answer this question by providing an explicit expression
of the bias in an MRP in terms of mean first passage times. This not only leads to an
improvement of Theorem 13 but also shows that the perturbation bounds of Theorems 11
and 13 hold more generally. The results also give a new interpretation of Kemeny’s constant
in terms of the bias in MRPs with constant reward. Due to time and space constraints,
these results could not be included in this chapter. For details we refer to (Ortner, 2024).
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of the recurrent class containing state s. As before, if there is only a single
irreducible class, we skip the notation for the initial state and write η(M,π).

We now introduce the notion of (εr, εp)-approximation of an MDP where
the parameters εr, εp intuitively provide an upper bound on the amount of
perturbation applied to rewards and transition probabilities, respectively.

Definition 15. Given two MDPs M = (S,A, r, p), M̄ = (S,A, r̄, p̄) over
the same state-action space we call M̄ an (εr, εp)-approximation of M if for
all s in S and all a in A, ∣∣r̄(s, a)− r(s, a)

∣∣ ≤ εr, (16)∑
s′∈S

∣∣p̄(s′|s, a)− p(s′|s, a)
∣∣ ≤ εp. (17)

Note that the roles ofM and M̄ in this definition are symmetric. That is, if
M̄ is an (εr, εp)-approximation of M then M is also an (εr, εp)-approximation
of M̄ .

Condition (17) fits the perturbation bounds of the previous section. That
is, let Pa, P̄a be the transition matrices of MDPs M and M̄ under action a.
Then (17) implies that ∥Pa− P̄a∥∞ ≤ εp for all actions a and more generally
∥Pπ − P̄π∥∞ ≤ εp for the transition matrices Pπ, P̄π of any stationary deter-
ministic policy π. Accordingly, the presented results about perturbation can
be directly applied to the Markov chains induced by any policy π.

Still, in principle one could also consider alternative formulations of con-
dition (17) using e.g. different norms or just bounding the difference of single
transition probabilities instead of the sum. However, this would change only
a few technical details in what follows.

In Section 6 on Markov chain and MDP aggregation below we will intro-
duce a more general definition of approximation where the underlying state
spaces of the two MDPs need not be the same.

Given Definition 15 one can obtain error bounds for MDP approximation
as corollary to Theorem 13.

Corollary 16. Let M̄ be an (εr, εp)-approximation of an MDP M .

(i) For any policy π that induces the same transition structure on M
and M̄ it holds that

|ρ(M,π, s)− ρ(M̄, π, s)| ≤ εr +
1
2
η(M,π, s) εp. (18)
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(ii) Assume that M and M̄ both have state independent optimal average
reward ρ∗ and ρ̄∗, respectively. Let π∗, π̄∗ be corresponding optimal po-
licies on M and M̄ , and assume that they induce Markov chains with
the same transition structure on M and M̄ . Then

|ρ∗ − ρ̄∗| ≤ εr +
1
2
max{η(M,π∗), η(M, π̄∗)} εp, and (19)

ρ(M, π̄∗) ≥ ρ∗ − 2εr − 1
2

(
η(M,π∗) + η(M, π̄∗)

)
εp. (20)

Proof. For (i) we consider the Markov chains induced by π on M and M̄
with stationary distributions µ and µ̄, respectively. Writing r and r̄ for the
mean rewards under π in M and M̄ , we have∣∣ρ(M,π, s)− ρ(M̄, π, s)

∣∣ = ∣∣∣∑
s′

µ(s′) r(s′)−
∑
s′

µ̄(s′) r̄(s′)
∣∣∣

=
∣∣∣∑

s′

(
µ(s′)− µ̄(s′)

)
r(s′) +

∑
s′

µ̄(s′)
(
r(s′)− r̄(s′)

)∣∣∣
≤

∑
s′

∣∣µ(s′)− µ̄(s′)
∣∣ r(s′) +∑

s′

µ̄(s′)
∣∣r(s′)− r̄(s′)

∣∣
≤ ∥µ− µ̄∥1 +

∑
s′

µ̄(s′) εr

≤ 1
2
η(M,π, s) εp + εr,

using Theorem 13 and (16) in the final step.
Concerning (ii), first assume that ρ∗ ≥ ρ̄∗. Then

ρ∗ − ρ̄∗ ≤ ρ(M,π∗)− ρ(M̄, π∗) ≤ εr +
1
2
η(M,π, s) εp

according to (18). The case when ρ∗ ≤ ρ̄∗ is symmetric and (19) follows.
Finally,

ρ∗ − ρ(M, π̄∗) ≤ ρ∗ − ρ(M, π̄∗) + ρ̄∗ − ρ(M̄, π∗)

≤
∣∣ρ(M,π∗)− ρ(M̄, π∗)

∣∣+ ∣∣ρ(M̄, π̄∗)− ρ(M, π̄∗)
∣∣

and bounding both of these terms by (18) yields (20).

The condition of having the same transition structure is obviously quite
restrictive when considering reinforcement learning applications. In an un-
known MDP environment it may take long until the learner has correctly
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identified all triples (s, a, s′) for which p(s′|s, a) > 0. In particular, when
working with the empirical MDP it may take many samples until a tran-
sition with very small probability has been observed. Moreover, optimistic
reinforcement learning algorithms (Filippi et al., 2010) sometimes assign po-
sitive probabilities even to transitions that have never been observed (Auer
and Ortner, 2007; Jaksch et al., 2010). However, as we will see in the next
section at least for a suitable optimal policy one can obtain bounds under
much weaker conditions.

4.3. An Improved Perturbation Bound

The following bound on the error made by an (εr, εp)-approximation ge-
neralizes a bound of Ortner (2007) from ergodic to communicating MDPs
and slightly improves a respective bound of Ortner et al. (2014a).

Theorem 17. Let M be a communicating MDP with diameter D and an op-
timal policy π∗ that satisfies the Bellman equation (12). Then for all (εr, εp)-
approximations M̄ of M and any initial state s,∣∣ρ∗(M)− ρ(M̄, π∗, s)

∣∣ ≤ εr +
D
2
εp.

Comparing Theorem 17 to the results of the previous section, we see
that there is no assumption about the transition structure of the approxi-
mation M̄ . Rather, M̄ not even needs to be communicating. It is also easily
possible to derive from Theorem 17 a corresponding result for Markov chains
that states the same perturbation bound as (13) but without any irreducibi-
lity condition on the perturbed Markov chain.

Corollary 18. Consider an irreducible Markov chain with transition ma-
trix P, stationary distribution µ, and diameter D. Let a perturbed Markov
chain over the same state space have transition matrix P′ and stationary
distribution µ′

s when starting in initial state s. Then for all states s,

∥µ− µ′
s∥∞ ≤ D

2
∥P−P′∥∞.

Proof. Choose an arbitrary state s′ and add a deterministic reward function r
to both Markov chains with r(s′) = 1 and r(s′′) = 0 for all states s′′ ̸= s′.
As the reward function is the same for both arising MRPs the perturbed
MRP is an (εr, εp)-approximation of the unperturbed MRP with εr = 0 and
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εp = ∥P−P′∥∞. Writing ρ and ρ′(s) for the average reward in the two MRPs
(when starting in state s) we get by Theorem 17

|µ(s′)− µ′
s(s

′)| = |ρ− ρ′(s)| ≤ D
2
εp.

Since s′ was chosen arbitrarily, the claim follows.

When both the original and the approximated MDP are communicating,
we can derive from Theorem 17 the following improvement over the result
of Corollary 16 (ii). We note that under stronger assumptions even better
bounds can be derived, cf. Section 5.2 of (Boone, 2024).

Corollary 19. Let M̄ be a communicating (εr, εp)-approximation of a com-
municating MDP M . Let π∗ and π̄∗ be optimal policies satisfying the Bellman
equation (12) in M and M̄ , respectively. Further assume that ρ(M̄, π∗) and
ρ(M, π̄∗) are independent of the initial state. Then writing ρ∗ := ρ(M,π∗),
ρ̄∗ := ρ(M̄, π̄∗) for the optimal average reward in M and M̄ , it holds that

|ρ∗ − ρ̄∗| ≤ εr +
1
2
D εp, and

ρ(M, π̄∗) ≥ ρ∗ − 2εr −D εp.

The proof is the same as that for Corollary 16 (ii) now using Theorem 17
instead of (18). Note that the assumption of the approximation being commu-
nicating and having state independent average reward for policies π∗ and π̄∗

in both MDPs can also be established by adding small additional transition
probabilities in a suitable way.

The following example provides a lower bound that shows that when the
perturbation in the transition probabilities is of order ε then the error in the
stationary distribution and in average reward can be of order εD.

Example 20. Consider two Markov chains with transition matrices

P =

(
1− p p
q 1− q

)
, P′ =

(
1− q q
q 1− q

)
,

where we assume p, q < 1
2
and 2q > p > q. Then the error in the transition

probabilities is of order ε := p − q and the stationary distributions are µ =(
q

p+q
, p
p+q

)
and µ′ = (1

2
, 1
2
), respectively. Hence, by definition of ε and since

by assumption q > ε,

∥µ− µ′∥∞ =
p

p+ q
− 1

2
=

ε

2(p+ q)
=

ε

2(2q + ε)
>

ε

6q
,
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which is of order Dε, as D = max
{

1
p
, 1
q

}
= 1

q
. Assigning reward 1 to one

state and 0 to the other one shows that this lower bound also holds for the
error in average reward.

4.4. Proof of Theorem 17

As the proof of Theorem 17 is quite instructive, we include it here in
full detail.11 Consider a communicating MDP M with optimal policy π∗

and an MDP approximation M̄ of M . The following result compares the
quantity ℓρ∗(M) to the accumulated rewards in M̄ when performing π∗ for
ℓ steps.

Lemma 21. Consider a communicating MDP M = (S,A, r, p) with diame-
ter D and let M̄ = (S,A, r̄, p̄) be an (εr, εp)-approximation of M . Let π∗ be
an optimal policy of M that satisfies the Bellman equation (12) and assume
that π∗ is performed on M̄ for ℓ steps. Then denoting by v̄∗(s) the number
of times state s is visited among these ℓ steps, with probability at least 1− δ
it holds that

ℓρ∗(M)−
∑
s∈S

v̄∗(s) · r̄(s, π∗(s)) ≤
(
εr+

D
2
·εp
)
ℓ+D

√
2ℓ log(1/δ) +D. (21)

Proof. We abbreviate r∗(s) := r(s, π∗(s)) and p∗(s′|s) := p(s′|s, π∗(s)), and
use r̄∗(s) and p̄∗(s′|s) accordingly. Then

ℓρ∗(M)−
∑
s∈S

v̄∗(s) · r̄∗(s) =
∑
s

v̄∗(s)
(
ρ∗(M)− r̄∗(s)

)
=

∑
s

v̄∗(s)
(
ρ∗(M)− r∗(s)

)
+
∑
s

v̄∗(s)
(
r∗(s)− r̄∗(s)

)
. (22)

For the first term in (22) we use the optimality equations (11) for π∗ and
replace

ρ∗(M)− r∗(s) =
∑
s′

p∗(s′|s) · λ∗(s′)− λ∗(s),

writing λ∗ := λπ∗ for the bias of π∗ on M . By Proposition 10, applying
a suitable translation to λ∗ we can assume without loss of generality that
∥λ∗∥∞ ≤ D

2
.

11A shorter proof can be found in (Boone, 2024), see Theorem II.1 on p. 50.
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The second term in (22) can be bounded by ℓεr according to (16) and we
obtain

ℓρ∗(M)−
∑
s∈S

v̄∗(s) · r̄∗(s) ≤
∑
s

v̄∗(s)
(∑

s′

p∗(s′|s)λ∗(s′)− λ∗(s)
)
+ ℓεr

= ℓεr +
∑
s

v̄∗(s)
(∑

s′

p̄∗(s′|s)λ∗(s′)− λ∗(s)
)

+
∑
s

v̄∗(s)
(∑

s′

p∗(s′|s)λ∗(s′)−
∑
s′

p̄∗(s′|s)λ∗(s′)
)
. (23)

The last term in (23) can be written and bounded as∑
s

v̄∗(s)
∑
s′

(
p∗(s′|s)− p̄∗(s′|s)

)
λ∗(s′)

≤
∑
s

v̄∗(s)
∑
s′

∣∣p∗(s′|s)− p̄∗(s′|s)
∣∣ · ∥λ∗∥∞ ≤ ℓεp · D

2
. (24)

For the second term in (23), we write sτ for the state visited at time step τ
to obtain∑
s

v̄∗(s)
(∑

s′

p̄∗(s′|s)λ∗(s′)− λ∗(s)
)
=

ℓ∑
τ=1

(∑
s′

p̄∗(s′|sτ )λ∗(s′)− λ∗(sτ )
)

=
ℓ∑

τ=1

(∑
s′

p̄∗(s′|sτ )λ∗(s′)− λ∗(sτ+1)
)
+ λ∗(sℓ+1)− λ∗(s1). (25)

By Proposition 10, λ∗(sℓ+1)− λ∗(s1) ≤ span(λ∗) ≤ D, and the sequence

Xτ :=
∑
s′

p̄∗(s′|sτ )λ∗(s′)− λ∗(sτ+1)

is a martingale difference sequence with |Xτ | ≤ D. Thus, an application of
Azuma-Hoeffding’s inequality (e.g., Lemma 10 of Jaksch et al., 2010) to (25)
yields that with probability 1− δ,∑

s

v̄∗(s)
(∑

s′

p̄∗(s′|s)λ∗(s′)− λ∗(s)
)

≤ D
√

2ℓ log(1/δ) +D. (26)

Combining (23), (24), and (26) we get

ℓρ∗(M)−
∑
s∈S

v̄∗(s) · r̄∗(s) ≤
(
εr +

D
2
· εp
)
ℓ+D

√
2ℓ log(1/δ) +D,

which completes the proof.
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With Lemma 21 established, Theorem 17 easily follows. Divide (21) by ℓ,
choose δ = 1/ℓ, and let ℓ → ∞. Since the average reward of a policy is not
random, the result holds surely and not just with probability 1.

4.5. Applications

As already mentioned, in the context of reinforcement learning the results
of the previous sections typically will be applied to an approximation of the
underlying but unknown MDP using the empirical estimates for rewards and
transition probabilities.

4.5.1. Estimation and Sufficient Precision

In order to guarantee that the empirical MDP M̄ is a good approxima-
tion of the true MDP M , one has to make sure that the empirical estimates
of the rewards and transition probabilities are close to their true values. In
view of the perturbation results, which depend on the largest error, this has
to hold for all state-action pairs. That is, assume a given target precision θ
shall hold e.g. for the maximal allowed difference of the average reward of
any policy in M and M̄ . Then we need to guarantee that (16) and (17) hold
for all state-action pairs for sufficiently small εr, εp so that in the bound of
Corollary 16 (i) we have εr +

η
2
εp ≤ θ. Thus e.g. choosing εr := εp := 2θ

η+2

would guarantee the target precision θ. Note that while condition numbers of
the true MDP M will usually not be known, due to the symmetric nature of
the perturbation bounds the respective values for the estimated MDP M̄ will
suffice in principle. However, in the theoretical analysis the random nature
of this quantity complicates matters, so that one usually tries to design al-
gorithms that do not use condition numbers explicitly, cf. e.g. (Jaksch et al.,
2010).

4.5.2. Confidence Intervals and Bounded Parameter MDPs

Confidence intervals are a widely used tool in reinforcement learning in
order to quantify the reliability of the empirical estimates. This holds in
particular when one aims at finite time guarantees that go beyond simple
convergence to an optimal policy. The size of the confidence intervals basically
corresponds to the precision achieved for the respective estimated quantities.
Accordingly, the analysis of reinforcement learning algorithms often combines
confidence intervals with perturbation results, see e.g. (Auer and Ortner,
2007).
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More generally, MDPs with (confidence) intervals instead of single fixed
values for rewards and transition probabilities have been investigated under
the notion of bounded parameter MDP (BP-MDP) (Givan et al., 2000; Te-
wari and Bartlett, 2007). As in our case, the intervals usually indicate some
kind of uncertainty with respect to the true values. Accordingly, beside re-
inforcement learning also questions of robustness have often been dealt with
in the framework of BP-MDPs. On the other hand, a BP-MDP can also be
considered to be a continuous set of MDPs, or alternatively, an MDP with
continuous action sets. Respective optimization in an BP-MDP has also be-
en used in the context of optimism in reinforcement learning (Filippi et al.,
2010), and computing an MDP maximizing the optimal average reward in
a BP-MDP is a common sub-routine of reinforcement learning algorithms
(Auer and Ortner, 2007; Jaksch et al., 2010).

5. Estimating the Stationary Distribution from Trajectories

So far, we have computed an estimate for the stationary distribution
by using estimates for the single transition probabilities, thus obtaining an
empirical transition matrix. While this is quite intuitive, it is also possible
to estimate the stationary distribution by just observing a trajectory of the
underlying Markov chain. That way one can obtain confidence intervals for
the stationary distribution of a Markov chain and the average reward of an
MRP directly. The subsequent exposition presents respective results of Paulin
(2015) and follows Ortner (2020). Another approach using sample paths to
obtain confidence intervals for optimal average reward and other values of
the MDP such as mean first passage times can be found in (Burnetas and
Katehakis, 1997).

5.1. Concentration Inequalities for Uniformly Ergodic Markov Chains

In the following we assume that the considered Markov chains are uni-
formly ergodic, i.e., there are θ < 1 and L such that

max
s∈S

∥µt
s − µ∥1 ≤ Lθt.

We note that irreducible, aperiodic Markov chains are uniformly ergodic, cf.
Remark 1.2 of Paulin (2015).

The first of the presented results is a version of McDiarmid’s inequality
for Markov chains.
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Lemma 22 (Corollary 2.10 and Remark 2.11 of Paulin, 2015). Let S1, . . . , St

be a random sequence of states generated by a uniformly ergodic Markov chain
with state space S and mixing time Tmix. Given a function f : St → R such
that

f(s1, . . . , st)− f(s′1, . . . , s
′
t) ≤

∑
i

ci I[si ̸= s′i] (27)

for constants c1, . . . , ct, it holds that

P
{∣∣f(S1, . . . , St)− E[f(S1, . . . , St)]

∣∣ ≥ ε
}
≤ 2 exp

(
− 2ε2

9 ∥c∥22 Tmix

)
.

This result can be applied to any MRP with underlying uniformly ergo-
dic Markov chain to obtain a concentration result for the empirical average
reward after any t steps.

Corollary 23. Consider an MRP (S, r,P, S1) where the Markov chain
(S,P, ν) is uniformly ergodic with mixing time Tmix. Writing µ̂t

S1
for the

empirical distribution after t steps defined as µ̂t
S1
(s) := 1

t

∑t
i=1 I{Si = s |S1},

it holds that

P
{∣∣µt⊤

S1
r− µ̂t⊤

S1
r
∣∣ ≥ ε

}
≤ 2 exp

(
− 2ε2t

9Tmix

)
.

Proof. We define f(S1, . . . , St) :=
1
t

(
r(S1)+ . . .+r(St)

)
. Then condition (27)

holds for ci =
1
t
, i = 1, . . . , t, so that we obtain the claim by application of

Lemma 22.

Note that the bound is trivial for t < Tmix(ε). On the other hand, when
t ≥ Tmix(ε), one additionally has ∥µt

S1
−µ∥1 ≤ ε, so that also |(µt

S1
−µ)r| ≤ ε.

Hence, in this case one obtains

P
{∣∣µ⊤r− µ̂t⊤

S1
r
∣∣ ≥ 2ε

}
≤ 2 exp

(
− 2ε2t

9Tmix

)
.

Then fixing an error probability δ provides a confidence interval for the ave-
rage reward ρ = µ⊤r. That is, with probability at least 1− δ, we have

∣∣µt⊤
S1
r− µ̂t⊤

S1
r
∣∣ ≤

√
9Tmix log

2
δ

2t
and

∣∣ρ− µ̂t⊤
S1
r
∣∣ ≤

√
18Tmix log

2
δ

t
.

Paulin (2015) also gives results for the difference between the empirical
and the stationary distribution of uniformly ergodic Markov chains, now in
terms of the total variation distance.
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Lemma 24 (Proposition 2.18 of Paulin, 2015).

P
{∣∣dTV (µ, µ̂

t
S1
)− E[dTV (µ, µ̂

t
S1
)]
∣∣ ≥ ε

}
≤ 2 exp

(
− 2ε2t

9Tmix

)
.

Lemma 25 (Proposition 3.16 and the following remark of Paulin, 2015).

E[dTV (µ, µ̂
t
S1
)] ≤

∑
s∈S

min

(√
8µ(s)

tΓ
, µ(s)

)
,

where Γ := maxk
{γ(P∗kPk)

k

}
is the pseudo-spectral gap of the chain. Here P

is the transition kernel interpreted as linear operator, P∗ is the adjoint of P,
and γ(P∗kPk) is the spectral gap of the self-adjoint operator P∗kPk.

Concerning the pseudo-spectral gap Γ more details can be found in (Pau-
lin, 2015). For many purposes it will be sufficient to know that in uniformly
ergodic Markov chains Γ can be bounded in terms of the mixing time Tmix

as (cf. Proposition 3.4 of Paulin, 2015)

1
Γ
≤ 2Tmix. (28)

Combining this bound with Lemmas 24 and 25 gives the following confi-
dence interval for the estimate of the stationary distribution.

Corollary 26. In any uniformly ergodic Markov chain with probability at
least 1− δ,

dTV (µ, µ̂
t
S1
) ≤

√
38STmix log

2
δ

t
.

Proof. Set the error probability in Lemma 24 to δ. Then by (28), Lemma 25,
and Jensen’s inequality it follows that

dTV (µ, µ̂
t
S1
) ≤

√
16STmix

t
+

√
9Tmix log

2
δ

2t
≤

√
38STmix log

2
δ

t
.

5.2. Application to Reinforcement Learning
The results of the previous section provide an alternative route for rein-

forcement learning algorithms. Instead of computing estimates of transition
probabilities, one evaluates trajectories of policies. Ortner (2020) suggests
an algorithm that re-uses samples when evaluating policies. However with
respect to computation the necessary evaluation of all policies is prohibitive
in general and can only be recommended when dealing with a small set of
policies to choose from as e.g. considered by Azar et al. (2013).
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6. Markov Chain and MDP Aggregation

MDP aggregations lead to simplifications that speed up the computation
of an optimal policy. Accordingly, MDP aggregations have a long history,
see (Givan et al., 2003) for references. While a simplified policy on an MDP
aggregation that performs well on the original MDP justifies the concept of
aggregation for MDPs (Van Roy, 2006), for Markov chains an aggregation
usually rather means a loss of information. For example, from the stationary
distribution of an aggregated Markov chain it is in general not possible to
obtain the stationary distribution of the original Markov chain. Thus, ag-
gregation of Markov chains is usually considered of limited interest in itself,
yet makes sense in MDP and reinforcement learning contexts. Here one is
often interested only in an aggregated value such as the average reward that
sometimes can be obtained from an aggregated stationary distribution. We
note that there are still a few references that investigate lossless aggregation
in Markov chains such as (Geiger et al., 2015).

In the following we concentrate on aggregation of MDPs and just note
that any aggregation of a Markov chain can be considered as a special case
thereof, e.g. naturally arising when considering a stationary deterministic
policy on an aggregated MDP.

Formally, there are various ways how to express MDP aggregation. First,
an aggregation of an MDP M = (S,A, r, p, S1) can be defined by a partition

Ŝ = {ŝ1, . . . , ŝk} of the state space S, where Ŝ constitutes the state space
of the aggregated MDP. Defining rewards and transition probabilities of the
aggregated MDP in a suitable way (cf. details below) one obtains an aggre-

gated MDP M̂ = (Ŝ,A, p̂, r̂, Ŝ1) where Ŝ1 contains S1. Generally, one can

define a surjective function φ : S → Ŝ with φ(s) = ŝ iff s ∈ ŝ. This also pro-

vides an alternative view on state aggregation: Given two MDPs M , M̂ the
latter can be defined to be an aggregation of the former if there is a surjective
function φ : S → Ŝ such that rewards and transition probabilities in M , M̂
are compatible (cf. Definitions 27 and 29 below). In the following, we usually
consider an aggregation to be such a surjective function φ mapping states to
aggregated states.

6.1. Exact Aggregations

The simplest case when aggregation can be applied is when there are
states having the same transition probability distributions and the same
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rewards under all actions. In this case it is obviously not necessary to di-
stinguish between these states and they can be aggregated. That is, the
aggregation function φ will map them to the same aggregated state. The
corresponding aggregated MDP will have rewards and transition probabili-
ties satisfying for all states s and all actions a,

r̂
(
φ(s), a

)
= r(s, a),

p̂
(
φ(s′) |φ(s), a

)
=

∑
s′′:φ(s′′)=φ(s′)

p(s′′ | s, a).

These two conditions can be taken as definition of an aggregation, which
can be applied to more general situations. That is, in general it is not neces-
sary that states which are aggregated have the same transition probability
distributions.

Definition 27. Given two MDPs M = (S,A, r, p, S1), M̂ = (Ŝ,A, r̂, p̂, Ŝ1),

we call M̂ an aggregation of M if there is a surjective function φ : S → Ŝ
such that Ŝ1 = φ(S1) and for all s in S, all ŝ in Ŝ, and all actions a,

r̂
(
φ(s), a

)
= r(s, a),

p̂
(
ŝ |φ(s), a

)
=

∑
s′:φ(s′)=ŝ

p(s′ | s, a).

Example 28. Consider a Markov chain with state space S = {1, 2, 3, 4, 5}
and transition matrix

P =


0 1/2 1/4 1/4 0
1/2 0 0 1/2 0
1 0 0 0 0
1/2 1/2 0 0 0
0 1 0 0 0

 .

The state space can be aggregated to 1̂ = {1, 2}, 2̂ = {3, 4, 5}, and the aggre-
gated Markov chain has transition matrix

P̂ =

(
1/2 1/2
1 0

)
.

While this aggregation obviously comes with a loss of information, for an
MRP in which the mean rewards coincide in states 1,2 as well as in states
3,4,5, the average reward could still be computed from the aggregated MRP.
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6.2. Policies and their Extensions

Since the state space in the aggregated MDP M̂ is smaller than in the
original MDP M there are fewer policies and not each policy in M has an
equivalent in M̂ . However, any policy π̂ : Ŝ → A defined on the aggregated
MDP M̂ can be extended to a policy π̂ : S → A on the original MDP M by
assigning to each state s in S the action π̂(φ(s)). Moreover, it can be shown

that an optimal policy π̂∗ on M̂ is also optimal in M , cf. Theorem 4 of Ortner
(2007).

6.3. Approximate Aggregations

If one allows some error, MDPs sometimes can be approximated by smal-
ler aggregated MDPs. In the simplest case, one would try to aggregate states
with similar rewards and transition probability distributions. Generally, the
error bounds that have been considered in Section 4 can also be employed
here so that there is a close link between MDP approximation and aggrega-
tion.

The following definition of approximate aggregation originally introdu-
ced by Ortner et al. (2014a) is a generalization of the notion of (εr, εp)-
approximation in Definition 15 to the case where the two considered MDPs
need not share a common state space.

Definition 29. An MDP M̂ = (Ŝ,A, r̂, p̂, Ŝ1) is an (εr, εp)-aggregation of

another MDP M = (S,A, r, p, S1) if there is a surjective function φ : S → Ŝ
with φ(S1) = Ŝ1 such that for all s in S and all actions a,∣∣r̂(φ(s), a)− r(s, a)

∣∣ ≤ εr, (29)∑
ŝ′∈Ŝ

∣∣∣ p̂(ŝ′ |φ(s), a)− ∑
s′:φ(s′)=ŝ′

p(s′|s, a)
∣∣∣ ≤ εp. (30)

Although the aggregated MDP in general has different state space than
the original MDP M , it is still possible to bound the error when using an
(εr, εp)-aggregation M̂ instead of M by perturbation bounds for the Markov
chains induced by a policy. This is possible by defining for a given (εr, εp)-

aggregation M̂ of M a new MDP M̄ , which is an (εr, εp)-approximation of M

and which has for each policy π̂ : Ŝ → A the same average reward as M̂ .
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Lemma 30. Let M̂ = (Ŝ,A, r̂, p̂) be an (εr, εp)-aggregation of an MDP
M = (S,A, r, p). Then there is an MDP M̄ = (S,A, r̄, p̄) that is an (εr, εp)-

approximation of M such that for all policies π̂ : Ŝ → A it holds that12

ρ(M̂, π̂, ŝ) = ρ(M̄, π̂, s) (31)

for all states s in S and all ŝ in Ŝ with φ(s) = ŝ.

Proof. For each state s in S and each action a we set r̄(s, a) := r̂(φ(s), a)
and

p̄(s′|s, a) :=
p(s′|s, a) · p̂

(
φ(s′) |φ(s), a

)∑
s′′:φ(s′′)=φ(s′) p(s

′′|s, a)
.

Note that p̄(·|s, a) is indeed a probability distribution over S. In particular,∑
s′∈S

p̄(s′|s, a) =
∑
s′∈S

p(s′|s, a)∑
s′′:φ(s′′)=φ(s′) p(s

′′|s, a)
· p̂
(
φ(s′) |φ(s), a

)
=

∑
ŝ′∈Ŝ

∑
s′:φ(s′)=ŝ′

p(s′|s, a)∑
s′′:φ(s′′)=ŝ′ p(s

′′|s, a)
· p̂
(
ŝ′ |φ(s), a

)
=

∑
ŝ′∈Ŝ

p̂
(
ŝ′ |φ(s), a

)
= 1.

Now by definition, the rewards r̄(s, a) = r̂
(
φ(s), a

)
and aggregated transition

probabilities∑
s′:φ(s′)=ŝ′

p̄(s′|s, a) =
∑

s′:φ(s′)=ŝ′

p(s′|s, a)∑
s′′:φ(s′′)=ŝ′ p(s

′′|s, a)
· p̂
(
ŝ′ |φ(s), a

)
= p̂

(
ŝ′ |φ(s), a

)
in M̄ have the same values for all states s that are mapped to the same
aggregated state by φ. Therefore, M̂ is an aggregation of M̄ according to
Definition 27, and it follows that (31) holds for s, ŝ with φ(s) = ŝ.

Further by (29) and (30) we have

|r(s, a)− r̄(s, a)| =
∣∣r(s, a)− r̂

(
φ(s), a

)∣∣ ≤ εr

12In M̄ , actually the policy π̂ extended to S as defined in Section 6.2 is considered.
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as well as∑
s′∈S

∣∣p(s′|s, a)− p̄(s′|s, a)
∣∣ =∑

s′∈S

p(s′|s, a) ·
∣∣∣∣1− p̂(φ(s′)|φ(s), a)∑

s′′:φ(s′′)=φ(s′) p(s
′′|s, a)

∣∣∣∣
=

∑
ŝ′∈Ŝ

∑
s′:φ(s′)=ŝ′

p(s′|s, a) ·
∣∣∣∣
∑

s′′:φ(s′′)=ŝ′ p(s
′′|s, a)− p̂(ŝ′|φ(s), a)∑

s′′:φ(s′′)=ŝ′ p(s
′′|s, a)

∣∣∣∣
=

∑
ŝ′∈Ŝ

∣∣∣ ∑
s′′:φ(s′′)=ŝ′

p(s′′|s, a)− p̂(ŝ′|φ(s), a)
∣∣∣ ≤ εp,

which shows that M̄ is an (εr, εp)-approximation of M .

As noted in the proof, the MDP M̄ in Lemma 30 is defined such that
M̂ is an (exact) aggregation of M̄ . Accordingly, an optimal policy π̂∗ of M̂
will also be optimal in M̄ . Since M̄ is an (εr, εp)-approximation of M we can
apply the results of Section 4 to obtain respective guarantees for the error
caused by approximate aggregation. In particular, the following result is a
generalization of Corollary 19.

Corollary 31. Let M̂ be a communicating (εr, εp)-approximation of a com-
municating MDP M . Let π∗ and π̂∗ be optimal policies satisfying the Bellman
equation (12) in M and M̂ , respectively. Further assume that ρ(M̄, π∗) and
ρ(M, π̂∗) are independent of the initial state, where M̄ is the MDP of Lem-

ma 30. Then writing ρ∗ := ρ(M,π∗), ρ̂∗ := ρ(M̂, π̂∗) for the optimal average

reward in M and M̂ , it holds that

|ρ∗ − ρ̂∗| ≤ εr +
1
2
D εp, and

ρ(M, π̂∗) ≥ ρ∗ − 2εr −D εp.

Example 32. The most extreme example of an (εr, εp)-aggregation is when
all states of a Markov chain or an MDP are aggregated to a single state
with transition matrix P = (1) under each action. While this can be done
for all irreducible Markov chains and communicating MDPs for a sufficiently
large εp it will in general make not much sense. An exception would be an
MRP where all states have the same mean reward, so that differentiating
between single states is not necessary if one is only interested in the average
reward.
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6.4. Applications

Aggregation usually combines the topic of approximation with a simplifi-
cation of the underlying MDP structure. When the MDP is explicitly given,
this way one trades precision with computation time. In the context of rein-
forcement learning aggregation techniques in order to speed up computation
make even more sense, as the MDP parameters are only estimated up to a
certain precision, so that aggregation does not necessarily mean an additional
loss of accuracy. An example for an online reinforcement learning algorithm
which employs aggregation of states that have intersecting confidence inter-
vals has been provided by Ortner (2013), which also notes the downside that
finding suitable aggregations is hard in itself (cf. also Even-Dar and Mansour,
2003 for details).

7. Beyond Aggregation: (εr, εp)-structured MDPs and Restless
Bandits

State aggregation is a natural concept that allows to simplify MDPs. With
respect to reinforcement learning, the knowledge of the respective structure
allows faster learning as an MDP with smaller state space can be learned
using fewer samples. While the concept of state aggregation is useful, an MDP
may exhibit more complex symmetries which allow to use a sample more than
once although aggregation is not possible. An example for such a setting is
the restless bandit problem (Whittle, 1988), which will be presented in this
section. Beside introducing the more refined concept of (εr, εp)-structured
MDPs, restless bandits also allow to apply other concepts presented in the
previous sections.

7.1. Motivation

As a motivating example consider that you would like to follow two or
even more soccer games running in parallel and broadcasted on different
TV channels. If you only have a single TV set, you have to switch channels
in order to get an update on each different game. Usually, one has certain
preferences concerning different scenes in a soccer game, so that one is for
example more interested in observing goals than a longer break caused by
an injury of a player. Further, a soccer game follows some inherent logic so
that the observer can try to predict whether something interesting is going
to happen in the next few moments. Observing a goal is thus more likely
after a team has been awarded a penalty than in the half-time break. In
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the model which we will define in more detail below we will assume that
underlying each soccer game is a hidden Markov chain according to which
the game evolves. The aim of the observer is to find a switching strategy that
maximizes her rewards with respect to the observed scenes (for example the
number of watched goals).

Obviously, the setting of this example appears in other natural applica-
tions where one has to switch between different options that evolve inde-
pendently of the made choices. Another well-known example that fits this
description is cognitive radio (Avner and Mannor, 2014) where one aims to
keep track of the transmission channel offering the best quality (cf. below for
details).

7.2. The Restless Bandit Setting

Choosing in discrete time steps t = 1, 2, . . . from a fixed set of options
is usually considered as an instance of a multi-armed bandit problem (Lat-
timore and Szepesvári, 2020). Accordingly, the options are called arms. In
the standard setting the rewards of each arm are iid samples from a fixed
distribution not known to the learner. In our case the rewards of each arm
come from an underlying MRP with irreducible and aperiodic Markov chain
that evolves independently of which arm is chosen.

More precisely, we consider a fixed set of K arms numbered from 1 to K.
Underlying each arm j there is an MRP with state space Sj, transition ma-
trix Pj and mean rewards rj(s) in each state s in Sj. For each MRP there is a
designated initial state at step t = 1. When an arm j is selected at time t, one
receives a random reward drawn from the reward distribution of the state s
of the chosen arm at time t. Then all MRPs evolve in parallel according to
their current states and their transition matrices.

What is important is that (as in our introductory soccer game example)
the only observations one can rely on is the feedback from selecting arms.
That is, in particular current states of arms not chosen are unknown so that
one only obtains an update for an arm by picking it.

7.3. Examples

Before considering a suitable MDP representation of the setting we give
two further examples of (Ortner et al., 2014b) for illustration.

36



7.3.1. Cognitive Radio

Returning to the application of cognitive radio, consider K radio channels
each of which can be either busy or available. The goal is to always pick a
channel which is available so that we assign deterministic rewards of either 0
when the chosen channel is busy, or 1 if it is available. The underlying MRPs
accordingly have two states 0 and 1.

When the probability of staying in either state is high then it is optimal
to keep playing an arm giving a reward of 1 also in the subsequent time step
and to switch otherwise. On the other hand, if the probability of a transition
to the other state is higher than staying in the current one, then it is better
to switch after observing a reward of 1 and to stay otherwise.

7.3.2. Exploration

Consider another restless bandit setting with two arms. Arm 1 with small
probability changes between two states giving reward 0 and 1, respectively,
as in the previous example. Arm 2 gives a constant and deterministic reward
of 1

2
. The optimal policy will keep playing arm 1 as long as it gives reward 1

and change to arm 2 when the observed reward of arm 1 is 0. Every now
and then the optimal policy will have to check out arm 1 so that it does
not miss when it changes back to the state giving reward 1. This shows that
the exploration-exploitation payoff (Fruit, 2019) is important in the restless
bandit setting even if the scenario is fully known. In particular, the optimal
policy will accept a temporary loss in order to collect information that will
lead to higher reward in later steps, which is the type of behavior a learning
agent has to adopt in many reinforcement learning problems.

7.4. The Optimal Policy

In general, neither the form of the optimal policy nor its computation are
easy (Papadimitriou and Tsitsiklis, 1999). Concerning the optimal policy one
can show that in general there is no index-based policy that is optimal. An
index-based policy computes a single quantity for each arm and decides based
on this index which arm to choose. The computation of the index takes into
account only observations concerning the arm itself and not any of the other
arms.

Theorem 33 (Theorem 4 of Ortner et al., 2014b). For each index-based
policy π there is a restless bandit problem in which π behaves suboptimally.
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Thus, while index policies are still attractive in order to at least approxi-
mate an optimal policy (Whittle, 1988; Guha et al., 2010; Grünewälder and
Khaleghi, 2019), the form of the optimal policy is in general more complex.
We will return to that point after introducing an MDP representation of the
restless bandit setting.

7.5. MDP Representation

The restless bandit setting can be formalized as an MDP as follows (Tekin
and Liu, 2011; Ortner et al., 2014b). The state space consists of vectors of
the form

(sj, nj)
K
j=1 := (s1, n1, s2, n2, . . . , sK , nK),

where each sj is an element of the state space Sj of arm j, and the nj’s
are pairwise distinct natural numbers. The interpretation of this vector is as
follows. For each arm j the last observed state sj as well as the number of
time steps are noted that have passed since this observation took place. As
there always has to be an arm that has been chosen at the previous step,
one of the nj’s has to be 1, while we also introduce the option of nj’s being 0
in case an arm j has not been chosen at all. In the latter case, as respective
state sj the initial state of arm j will be used.

The actions are obviously the arms 1, 2, . . . , K and when choosing arm i in
state (sj, nj)

K
j=1 the successor state in the MDP can only change the observed

state of arm i. For this arm i the successor state has ni = 1, while the states
of the arms j ̸= i not chosen remain the same and the respective counts nj

increase by 1. The transition probabilities correspond to the ni-step transition
probabilities of arm i, that is, the respective entries in the power matrix
Pni

i . More precisely, the transition probability from state (sj, nj)
K
j=1 to state

(s′j, n
′
j)

K
j=1 under action i is given by

p
(
(s′j, n

′
j)

K
j=1 | (sj, nj)

K
j=1, i

)
=


pni
i (s′i|si), if n′

i = 1 and ∀j ̸= i :
n′
j = nj + 1, sj = s′j,

0 else.
(32)

Finally, the reward for choosing arm i in state (sj, nj)
K
j=1 is taken from

the reward distribution of the observed state of the chosen arm i, so that the
respective mean reward is given by

∑
s∈Si

pni
i (s|si) · ri(s).

By construction the number of states of the introduced MDP represen-
tation is countably infinite. However, considering that after a finite number
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of T steps each nj cannot be larger than T it is sufficient to consider a finite
MDP where the state space is restricted to states (sj, nj)

K
j=1 with nj ≤ T .

As the MDP representation contains all information at the disposal of
the learner, the optimal policy of a restless bandit problem corresponds to
the optimal policy in the MDP representation. That way we have not only
found a neat way to represent the setting but can also formally pin down the
optimal policy. Note that an optimal policy will operate only on a finite part
of the infinite MDP representation, except in case there is an arm that is never
played. Such arms can however simply be deleted from the representation so
that considering a finite representation is always sufficient. In principle, the
computation of an optimal policy in this finite MDP representation can be
done using standard algorithms as those briefly mentioned in Section 3.4.

7.6. (εr, εp)-structured MDPs

The MDP representation of the restless bandit setting has some intere-
sting properties that facilitiate learning. First, we have already seen that
the transition probability distributions are sparse, that is, most transition
probabilities are known to be 0 so that there is no need to sample them. Fur-
thermore, also the remaining positive transition probabilities have a special
structure. Generally, the transition probability for choosing arm i in state
(sj, nj)

K
j=1 only depends on si and ni and not on the other entries of the state

vector. Moreover, these transition probabilities can actually be observed in
different states. That is, by (32) the transition probability distributions for
choosing arm i in two states (sj, nj)

K
j=1, (s

′
j, n

′
j)

K
j=1 are basically the same

when si = s′i and ni = n′
i, only the respective successor states are different.

Finally, for sufficiently large nj the Markov chain underlying arm j can be
considered to be close to its stationary distribution. Accordingly, states that
differ only with respect to arms j with nj ≥ T j

mix(ε) can be aggregated, whe-
re T j

mix(ε) denotes the ε-mixing time of the Markov chain underlying arm j.
The introduced error depends on ε and can be bounded by Corollary 31.

While the latter aggregation of states can be formulated within the ag-
gregation formalization introduced in Section 6, the structural properties
concerning the individual transition probabilities cannot. The following noti-
on of (εr, εp)-structured MDP however can grasp also similarities on the level
of state-action pairs instead of just states.

Definition 34 (Ortner et al., 2014b). Let M = (S,A, r, p, S1) be an MDP
and c : S × A → C be a coloring function that assigns each state-action
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pair a color from a given set of colors C. We call the pair (M, c) an (εr, εp)-
structured MDP if for each two state-action pairs (s, a), (s′, a′) with c(s, a) =
c(s′, a′) there is a bijective translation function φs,a,s′,a′ : S → S such that

|r(s, a)− r(s′, a′)| ≤ εr,∑
s′′

∣∣p(s′′|s, a)− p
(
φs,a,s′,a′(s

′′) | s′, a′
)∣∣ ≤ εp.

While (εr, εp)-structured MDPs can represent weaker notions of similarity
than aggregation, in general the MDP cannot be reduced to a smaller one.
Aggregation of two states s, s′ in the sense of Definition 27 would only be
possible when c(s, a) = c(s′, a) for all actions a and the associated translation
function φs,a,s′,a is the identity. However, even if this is not the case, with
respect to reinforcement learning the additional structural information allows
the learner to speed up the learning process.

For the MDP representation of the restless bandit we can give the followi-
ng coloring function. We choose c((sj, nj)

K
j=1, i) = c((s′j, n

′
j)

K
j=1, i

′) whenever
i = i′, si = s′i, and either ni = n′

i or ni, n
′
i ≥ T i

mix(ε). The corresponding
translation function maps the state

(s1, n1 + 1, . . . , si−1, ni−1 + 1, s, 1, si+1, ni+1 + 1, . . . , sK , nK + 1)

to state

(s′1, n
′
1 + 1, . . . , s′i−1, n

′
i−1 + 1, s, 1, s′i+1, n

′
i+1 + 1, . . . , s′K , n

′
K + 1).

Intuitively, the translation function maps the possible successor states of
(sj, nj)

K
j=1 to the corresponding successor states of (s′j, n

′
j)

K
j=1 when picking

arm i.

7.7. Notes and Applications

The restless bandit setting combines all the topics we have encounte-
red before. It also introduces the notion of (εr, εp)-structured MDPs, which
generalizes the concept of aggregation. Taking a look at the single Mar-
kov chains Cπ induced by a policy π : S → A, all states s, s′ for which
c(s, π(s)) = c(s′, π(s′)) could be aggregated in Cπ. Thus, the coloring function
stores all respective structural information of all the |A||S| Markov chains Cπ.

A reinforcement learning algorithm for restless bandits and more generally
for (εr, εp)-structured MDPs can be found in (Ortner et al., 2014b). The given
algorithm is able to exploit the underlying structure by making use of the
results presented in this section.
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