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1. Introduction

In reinforcement learning (RL) an agent tries to learn optimal behavior in an unknown en-

vironment by evaluating feedback�usually some quanti�able and comparable reward�to his

actions. As the learner's actions may pay o� not immediately, he may have to accept short-term

discouraging feedback to achieve a long-term goal state with large positive feedback. Thus, in

typical RL applications like robotics, control, or game playing [e.g., 25, 65] the learner will get

This proposal can be considered as a continuation of the Erwin Schrödinger scholarship FWF: J 3259-N13

�Structure in Reinforcement Learning�.
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rewarding feedback only when a given task is �nished after a series of coordinated actions which

individually give no or even misleading feedback.

Typically, the learner's environment is assumed not to be deterministic so that executing the

same action in the same state may produce di�erent results. Such a randomized setting gives

rise to the so-called exploration-exploitation problem: The learner has no guarantee that the

strategy that performed best so far, is indeed the best strategy in the long term. Thus the

learner has to �nd a reasonable payo� between exploiting a well working strategy and exploring

other possibilities that may give higher reward. However, this includes the risk of following

a suboptimal strategy. The learner may of course �rst conduct an extensive exploration of the

whole environment, after which an optimal strategy can be identi�ed with high probability, which

in turn can be executed in a subsequent exploitation phase. However, separating the exploration

from the exploitation is rather costly, as it will take a long time to obtain a su�ciently precise

approximation of the environment. Thus, we are rather interested in algorithms that learn online

and handle the exploration-exploitation problem implicitly. To measure the performance of an

online RL algorithm we consider its regret, that is, the loss the algorithm su�ers when compared

to an optimal strategy.

The major practical problem that prevents implementation of RL algorithms for many poten-

tial applications is that real world problems usually induce RL representations with large, often

continuous state space, while typical algorithms are not e�cient in environments with large state

space. One of the reasons for this is that, unlike humans, RL algorithms are not able to exploit

the environment's structure, e.g. similarities in the state space. The main goal of the project is

to develop tools how to deal with structured and continuous environments.

In the precursor project �Structure in Reinforcement Learning� (FWF:J 3259-N13), together

with scientists from the SequeL team at Inria Lille (cf. Section 7 below) we were able to de�ne

very general similarity structures for reinforcement learning problems in �nite domains and to

achieve improved theoretical regret bounds when the underlying similarity structure is known.

The developed techniques and algorithms also gave the �rst theoretical regret bounds for rein-

forcement learning in continuous domains. The proposed project wants to take the research on

continuous reinforcement learning �a setting which is of particular importance for applications�

a step further, not only by improving over the known bounds, but also by development of e�cient

algorithms. Moreover, we also want to investigate in more general settings where the learner does

not have direct access to the domain information, but only to a set of possible models. Also for

this setting, the precursor project has produced �rst theoretical results, assuming �nite domains

and that the set of possible models contains the correct model. In the proposed project, we aim
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at generalizing this to in�nite domains and loosening the assumption on the model set, which

shall not necessarily contain the correct model, but only a good approximation of it.

2. State of the Art

2.1. Setting. Reinforcement learning problems usually are formally represented as Markov de-

cision processes [65]. In a Markov decision process (MDP) M with state space S and action

space A, a learner starting in a given initial state s1 ∈ S chooses at each time step an action

from A. When executing action a in state s, the learner receives a random reward r with mean

r(s, a) according to some distribution on a bounded interval (which we assume to be [0,1] in the

following). Further, according to the transition probabilities p(s′|s, a), a random transition to a

state s′ ∈ S occurs. If the learner's choice of actions at each time step t is uniquely determined

by the history so far, this establishes a stochastic process described by the states st visited at

time step t, the actions at chosen by the learner at step t, and the rewards rt obtained (t ∈ N).
Usually, one is interested in maximizing the expected average reward

E

[
1
T

T∑
t=1

rt

]
an algorithm can gain within T steps. For MDPs with �nite state and action space, the limit

of this expression for T → ∞, called the average reward, can be maximized by an appropriate

stationary policy π : S → A that de�nes an optimal action for each state [55]. Assuming that

all states are reachable from any other state, the optimal average reward

ρ∗ := max
π:S→A

lim
T→∞

1
T

T∑
t=1

E [r(st, π(st)]

is independent of the initial state s1.

A special case are MDPs wit a single state, so-called multi-armed bandits. In this setting the

learner chooses at each time step an arm a from a set A (corresponding to the action space in the

MDP setting), which gives a random reward with bounded mean r(a). Thus, in the multi-armed

bandit setting, only the rewards are of interest.

Online Learning and Regret. We are interested in algorithms that perform well when comparing

their rewards to a strategy that always chooses the best action. That is, we compare the accu-

mulated rewards collected by the algorithm with those to be expected from an optimal policy.
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Thus, we de�ne the regret of an algorithm A after T steps to be

Tρ∗ −
T∑
t=1

rt.

In the meantime, regret bounds for (undiscounted) RL are a well-established area of research.

For the sake of completeness however, we brie�y indicate the relation to similar theoretical

research in RL. For a detailed discussion we refer to Section 1.1 of [22].

First, for a lot of RL algorithms, ranging from earliest work like Q-learning [72] to more

recent approaches like the knowledge gradient [21] one can show asymptotical optimality, that

is, the algorithm converges to an optimal policy when the time horizon goes to in�nity. While

these algorithms also often work very well in practice, those theoretical guarantees are rather

weak compared to regret bounds, as asymptotical optimality does not tell anything about the

algorithms' �nite time behavior.

PAC bounds are stronger, bounding the number of steps until an algorithm performs probably

approximately optimally. Such bounds are given e.g. for the well-known algorithms E3 [29], and

R-Max [10] and can actually be translated into regret bounds (and vice versa), cf. Corollary 3

of [22].

Similar to PAC bounds, sample complexity bounds as introduced in [27] for R-Max count the

total number of suboptimal steps of an algorithm. These bounds are also quite popular for the

discounted RL setting [63, 66, 33]. Finally, we would like to mention that, while there are also

regret bounds for discounted RL [60, 61], these bounds are usually weaker than those for the

undiscounted setting, as the discounted regret is measured along the trajectory taken by the

learning algorithm.

2.2. Upper Con�dence Bound Algorithms and Regret Bounds. One way to handle the

mentioned exploration-exploitation dilemma is the use of con�dence intervals, as introduced

for the multi-armed bandit setting by Lai and Robbins [32] and later simpli�ed by the Ucb

algorithm of Auer et al. [4]. For both algorithms logarithmic regret bounds have been shown.

These bounds are however problem-dependent, that is, they depend on further parameters of the

bandit problem at hand. There are also alternative, problem-independent bounds on the regret

of order
√
T . More precisely, there is a lower bound of Ω(

√
|A|T ), which is met (apart from

logarithmic factors) by various algorithms [5, 24, 2].

In the general MDP setting, regret bounds which are asymptotically logarithmic in the hori-

zon T were �rst shown for the so-called index policies of Burnetas and Katehakis [14], cf. also

the improvements given by Tewari and Bartlett [68]. As the bandit algorithms mentioned before,

these index policies also use con�dence bounds to choose actions optimistically.
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The �rst online regret bounds that hold for arbitrary horizon T were shown for the Ucrl

algorithm, �rst introduced in Auer and Ortner [3] and later re�ned by Jaksch et al. [22]. Similarly

to the Ucb algorithm for the bandit setting, the Ucrl algorithm1 �rst considers a set of plausible

models de�ned via con�dence intervals. Among the plausible models, the algorithm then chooses

the optimistic model that promises the highest average reward and a respective optimal policy.

Jaksch et al. [22] give a regret bound of O(D|S|
√
|A|T ) and an alternative �gap�-dependent bound

of O
(
D2|S|2|A| log T

g

)
, where D is the diameter of the MDP de�ned by the expected number of

steps it takes at most to reach any state from any other state, and the gap g is the di�erence

between the optimal average reward ρ∗ and the average reward of the best suboptimal policy. A

complementary lower bound of Ω(
√
D|S||A|T ) is known as well [22].

For the Regal algorithm [7], a modi�cation of Ucrl, alternative regret bounds where shown

where the diameter in the Ucrl bounds is replaced with a smaller transition parameter D1

(corresponding to an upper bound on the span of the bias [55] of an optimal policy). However,

this bound can be achieved only when the learner knows an upper bound on D1. Otherwise,

the learner has to guess such an upper bound, giving a slightly worse bound with respect to the

size of the state space. Similarly to Ucrl, Regal chooses an optimistic MDP and a respective

optimal policy, however the set of plausible MDPs is restricted to MDPs with bias span bounded

by D1. This implies another problem with Regal: Unlike Ucrl, where optimistic MDP and

optimal policy can be computed using so-called extended value iteration� no e�cient procedure

is known to compute the optimistic MDP with bounded bias span needed by Regal.

2.3. Exploiting Structural Information. There are many real world problems that could in

principle be represented as an MDP. However the respective MDP representation would in most

cases have a large state space and a large action space, so that typical algorithms like Ucrl

could not be employed, since complexity and regret grow linearly or even polynomially with the

number of states and actions.

We are convinced that one of the main reasons for this problem is that �unlike human

learning� RL algorithms are not able to exploit underlying symmetries and similarities the

learning problem Thus, the main focus of the proposed project is the investigation of such

similarity structures for MDPs and their exploitation by respective learning algorithms, with an

emphasis on continuous (state and action) RL.

We will concentrate on the following three topics: First, we want to make progress with

RL in continuous state space. The second major topic (and this can be also considered as

a method to deal with continuous state space) are more general RL settings where the right

1In the following, I do not distinguish between the very similar Ucrl algorithm of [3] and the Ucrl2 algorithm
of [22].
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state representation has to be learned as well. Finally, we also aim at other generalizations of

continuous RL settings. As the precursor project (FWF:J 3259-N13) dealt with the same topics,

in the following we not only give an overview of the proposed research, but also of what has been

achieved during my 10 month stay at Inria Lille.

3. Continuous Reinforcement Learning Problems

Many real world problems demand continuous state or action spaces, and one of the big chal-

lenges for RL is to deal with such continuous domains. Continuous RL settings are usually

examined under strong structural assumptions. The most natural and also most common as-

sumptions express the idea that close states (according to some metric of the underlying space)

exhibit similar behavior. Usually, such assumptions are formalized as Lipschitz (or more general

Hölder) continuity of reward and transition functions.

Continuous-Armed Bandit Problems. The simplest continuous RL problem is the 1-

dimensional continuum-armed bandit, where the learner has to choose arms from a bounded

interval. This setting has been investigated in detail. There are regret bounds for algorithms

which work with a �xed discretization [30, 6], but also adaptive discretizations have been pro-

posed and analyzed [31, 12]. In either case, regret bounds have been derived that depend on

parameters of the problem, like the Hölder parameter of the reward function. However, while

the continuum-armed bandit is a continuous reinforcement learning setting, it is no special case

of the general continuous state MDP setting we are interested in (and rather corresponds to a

continuous action space), and hence cannot be directly compared to it.

Continuous State MDPs with Lipschitz Condition. A lot of work on continuous RL is

con�ned to rather particular settings, primarily with respect to the considered transition model.

In the simplest case, the transition function is considered to be deterministic [44], and mistake

bounds for the respective discounted setting have been derived by Bernstein and Shimkin [8]. We

note that for �nite MDPs with deterministic transitions, regret bounds can be achieved which

are closer to the bandit than the general MDP setting, cf. [49]. Another common assumption is

that transition functions are simple (e.g. linear) functions of state and action plus some noise.

For such settings sample complexity bounds have been e.g. given in [62, 11]. Further, Õ(
√
T )

bounds for the regret after T steps are shown in [1] for the adaptive control of linear quadratic

systems.

There is also some research considering more general transition dynamics under the assumption

that close states behave similarly, as will be considered here. While most of this work is purely

experimental [23, 70], there are also some contributions with theoretical guarantees. Thus,
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Kakade et al. [26] consider PAC-learning for continuous RL in metric state spaces, under the

assumption that generative sampling is possible. The proposed algorithm is a generalization

of the E3 algorithm [29] to continuous domains. A respective adaptive discretization approach

is suggested by Nouri and Littman [46]. The PAC-like bounds derived however depend on the

(random) behavior of the proposed algorithm.

Work in the Precursor Project. In the precursor project (FWF:J 3259-N13), borrowing the

idea of discretizing and applying an algorithm with known regret bounds from similar continuum-

armed bandit algorithms [30, 6], we were able to give an algorithm in the spirit of Ucrl [22] which

employs con�dence intervals for aggregated rewards and transition probabilities to determine an

optimistic policy. For deriving regret bounds we combined aggregation techniques with the

original proof of the regret bounds for Ucrl. The derived bounds of Õ(T 3/4) for this algorithm
are the �rst sublinear upper bounds on the regret in such a general RL setting and were accepted

to NIPS [50].

Research Plan and Methodology. Although [50] was an important �rst step, there are still

a lot of open questions and room for improvement. First, the achieved regret bound of Õ(T 3/4)
(for the Lipschitz case) does not meet the preliminary lower bound of Ω(

√
T ) we obtained and

is probably not best possible. Computationally, there are two issues concerning the UCCRl

algorithm suggested in [50], similar to the Regal algorithm discussed at the end of Section 2.2.

First, it needs (an upper bound on) the bias span of the underlying MDP as an input. Not

having this information, the algorithm can try to guess it keeping the bounds of the same order,

yet accepting large additive constants. Second, it is not clear whether the optimistic MDP and

the optimal policy UCCRl employs in each episode are e�ciently computable. Like Regal,

UCCRl only considers plausible MDPs whose bias span is upper bounded by the real one.

It is an open problem we want to address whether extended value iteration or other e�cient

algorithms can be adapted to this setting. In that respect, we also plan to consider alternative

settings in which the learner tries to generalize from a set of expert trajectories or starts learning

with such information given to speed up learning.

Further, while I expect this to be di�cult, an improvement over the bounds for the original

Ucrl algorithm (diameter, state space) would also result in an improvement for the respective

continuous algorithm. Further investigation into the gap between lower and upper bound on the

regret of Ucrl are not the main point of this project, however progress in that direction may

well be the side result of research conducted within the proposed project.

While the �xed discretization approach gave the �rst results, in general it will not be su�cient

to deal with continuous MDP learning problems. Thus, instead of that static approach, we also
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want to work on algorithms which adapt the employed discretization to the collected data, as

the Zooming algorithm [31] does in the continuous bandit setting. In that case, progress would

be made by generalizing notions like the zooming dimension to general continuous RL problems.

Similar notions have also been employed for sample complexity bounds in discounted RL [15].

Last but not least, while the focus of the project is on theoretical research, we hope to learn

from collaboration with the Intelligent Autonomous Systems Lab of TU Darmstadt (see Section 7

below) about application of RL methods to robotics. While we do not expect that the methods

we develop for proving theoretical bounds can be employed unmodi�ed, we hope that some ideas

can be adapted to work also for practical problems.

More general topics that are hoewever also relevant for continuous RL will be discussed in the

two subsequent sections.

4. Selecting State Representations

The following is quite a di�erent approach to RL as introduced by Maillard et al. [38]. The

learner interacts with an environment by receiving rewards and observations in return for choosing

actions, just as in the MDP case. However, it is not assumed that the state space of the MDP

is known to the learner nor that the states are directly observable. Rather, the learner has a

set of representations which map histories of past interactions to a discrete state space, only

some of which result in the true underlying MDP process. This setting is particularly interesting

for continuous RL problems: First of all, any representation can be considered to be a possible

discretization of an underlying continuous state space. Also, we actually employ this technique for

continuous RL when the Lipschitz/Hölder parameters are not known to the learner by considering

each representation to be a discretization of the parameter space [50]. The considered setting also

generalizes other approaches like context trees [41] or probabilistic deterministic �nite automata

[71], which try to extract high-level discrete features from the observations provided by the

(possibly continuous and high-dimensional) environment.

The original paper [38] showed regret bounds (with respect to the optimal policy for the true

MDP representation) of order O(T 2/3) for the so-called Blb algorithm. The Blb algorithm

employs the Ucrl algorithm for each representation and uses the upper bound on the regret

known for Ucrl [22] as a reference value. Representations that do not achieve su�ciently high

rewards are discarded. The Blb algorithm and its analysis come with some disadvantages.

First, Ucrl is used by Blb in a �black-box� fashion. Second, in order to apply the Ucrl regret

bounds, BLB needs to guess the diameter [22] of each representation, which comes at the cost

of an additive constant exponential in the diameter of the underlying true MDP. Finally, the

analysis is restricted to �nite sets of representation functions.
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Work in the Precursor Project. Within the precursor project (FWF:J 3259-N13), we could

improve over the original results of [38] in the following way. First, using an Ucrl-like optimistic

model selection approach we were able to improve the bounds from O(T 2/3) to O(
√
T ) without

the need to guess the MDP's diameter. Secondly, we could generalize the original BLB algorithm

to work with an in�nite set of representations. The �rst result was accepted to ICML 2013 [39],

while the second one has recently been accepted for AISTATS 2013 [45].

Research Plan and Methodology. Concerning the selection of state representation models,

we currently aim at settings in which the learner does not have access to the underlying MDP, but

that the set of state representations available to the learner only contains a good approximation.

Note that this setting under the assumption of having an in�nite number of models is the most

general setting of continuous state RL one can think about: One has the underlying continuous

state MDP, yet due to reasons of computability, one prefers to work with a suitable discretization

of the MDP, yet it is not clear in advance what would be a good discretization. Considering any

discretization to be an approximate model, the goal is to bound the regret with respect to the

best model or (this is more challenging) the optimal policy in the original continuous state MDP.

Currently, we can deal with an in�nite state space [45], yet get worse regret bounds than in

the �nite model case. Still, the approach in [45] takes the Blb algorithm [38] as a starting point

whose regret bounds are also of order T 2/3. Thus, we expect that by using similar techniques to

generalize the Oms algorithm of [39] to the in�nite models case.

For the step from having an exact Markov model to having only approximations at our disposal,

we will try to use techniques introduced in [51] and [47] where we also had to deal with learning

in MDP using approximations, yet in a di�erent context. Concerning the approximations, there

are three scenarios (of increasing di�culty) we want to examine: First, each model (of �nitely

many) comes with a prede�ned approximation error of that model, and there is one suitable

model approximating the true MDP model with exactly that error, second the approximation

error has to be guessed for each model, third extend this to the case of in�nitely many models.

As all algorithms so far have only dealt with the setting where the underlying true MDP has

�nite state and action space, it will be the �rst step to consider the setting of �nding the best

approximate state representation under this same assumption. Later, we will try to adapt our

results to the case of continuous state and action space.

Another open question that shall be addressed is the dependence on the model parameters,

that is, size of state and action space etc. While the original Blb algorithm proposed in [38] has

worse dependence with respect to the horizon, the dependence with respect to the state space is

much better than for the Oms algorithm of [39] that gives optimal dependence on the horizon.

That is, while the regret of [38] only depends on the state space of the true model, for [39] the
9



state spaces of all models appear as a factor in the regret bound. It is an open question we

want to address whether it is possible to have regret bounds that are optimal with respect to

the horizon and only depend on the true state space.

5. Generalizations

While the emphasis of the project lies on continuous RL, progress may be made on more general

settings as also exempli�ed in the previous section on selecting state-representations. Thus, in

general it may be useful to generally deal with structures in (discrete or continuous) RL problems

and ways how to exploit them. Particularly interesting structures are similarities between states

or also actions. Often, such similarity structures lead to some kind of aggregation of similar states

to meta-states. This topic has already been extensively studied in the literature and has found

various applications and extensions, e.g. aggregation in factored MDPs [20, 16, 28], 2-player

zero-sum games [54], multiagent settings [73], and theory of social choice [53] to name a few. A

lot of work on aggregation, similarity and state abstraction in MDPs considers the approximate

dynamic programming view, when the underlying MDP is known. Speci�c topics of this work

include e.g. approximate value or policy iteration [58]. For an overview see e.g. [13, 42, 36]. In

practical problems �neat� aggregations are not always possible. Still, by aggregating states which

are su�ciently similar, the problem at hand can be approximated reasonably well. Respective

bounds on the loss by aggregation have been given in [18, 19, 67, 57, 48]. Complexity is also

an issue here. While �nding a minimal perfect aggregation is a problem that can be solved

in polynomial time [20, 43], Even-Dar and Mansour [18] have shown that �nding an optimal

approximate aggregation is hard even when the MDP is known.

There is also work on learning in MDPs with exploitation of an underlying (similarity or other)

structure. Thus, Le�er et al. [34] consider a (discrete) state space which is partitioned into sets

of states of the same type, where states of the same type are assumed to have the same transition

dynamics. That way, less experience is needed until good performance is achieved when compared

to standard algorithms. Also, RL in factored MDPs has been considered in [64, 37, 17], including

sample complexity bounds for a variant of the R-Max algorithm Li [35]. Concerning learning

in structured MDPs, unlike in aggregation where the aim is to simplify the MDP, our interest

lies rather in speeding up learning, which not necessarily allows simpli�cation of the underlying

MDP.

Work in the Precursor Project.

Online Aggregation. If the underlying symmetries of the MDP are not known beforehand, �nd-

ing an aggregation of the MDP online while learning becomes an interesting topic, have been
10



discussed in the literature only to a limited extent [40, 59, 9], and usually without any theoretical

guarantees. In the precursor project (FWF:J 3259-N13) we introduced a modi�ed Ucrl algo-

rithm [22], which employs con�dence intervals for calculating an aggregation of the estimated

model MDP before computing an optimistic policy. That way, policy computation can be per-

formed on a smaller MDP and therefore more e�ciently. Indeed, the proposed algorithm has

also been tested in experiments and showed improved performance when compared to Ucrl.

We also derived regret bounds for the proposed algorithm that also depend on the quality of the

employed aggregation algorithm. For a suggested simple aggregation algorithm (a modi�cation

of an algorithm suggested in [18]) one obtains regret bounds as for Ucrl [22], just with an addi-

tional factor
√
S. These results have been accepted for publication in the Annals of Operations

Reserach [47].

Similarity Exploitation and Restless Bandits. Concerning the development and exploitation of

new similarity structures the so-called restless bandit setting proved to be a rich test bed for

the development of similarity structures in RL. In the restless bandit setting, the learner faces a

multi-armed bandit problem with each arm having internal states evolving (independently of the

learner's actions) according to a Markov process unknown to the learner. The rewards of each

arm are stochastic and depend on the state of the arm when choosing it. Since it is assumed that

the learner can only observe the state of the arm sampled, this is a partially observable Markov

decision process (POMDP). The problem can be turned into an MDP with countably in�nite

state space however, where some of the transitions are known and the reward and transition

functions exhibit certain structural symmetries known to the learner. Generalization of this

structure has led to the de�nition of so-called ε-structured MDPs in which additional to the

standard MDP setting there is a coloring function available which assigns the same color to

state-action pairs with ε-close rewards and transition probabilities. This notion of ε-structured

MDPs is quite general and subsumes for example (approximate) state aggregation [20, 18] and

MDP homomorphisms [56].

For learning in ε-structured MDPs we were able to modify the Ucrl algorithm [22] to ε-

structured MDPs and to show enhanced regret bounds with improved dependence on the size

of MDP. That is, the regret now depends on the number of colors instead of the number of

states and actions of the MDP. These results were accepted to ALT [51] and have been invited

to Theoretical Computer Science [52]. Further, the methods developed for the analysis of the

restless bandit setting eventually also led to the already mentioned �rst online regret bounds for

continuous RL [50].
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Research Plan and Methodology. First, as a continuation of the work done in the precursor

project, there are still some open questions concerning the restless bandit setting. Thus, while

the regret bounds are optimal with respect to the horizon, there is still a large gap between the

lower and the upper bound on the regret, when considering all parameters of the setting. Also,

the current analysis does not make use of all the structural information present in the setting.

Further investigation into this may lead to more general patterns that may turn out to be useful

in other cases as well.

On the other hand, consideration of more complex POMDP settings is of interest as well.

Although the approach used in the restless bandit will probably not generalize to arbitrary

POMDPs, it would be at least interesting to see how far it works, and whether further modi�-

cations allow generalization to wider sets of POMDPs.

Another topic will be the generalization of the continuous RL setting to RL in arbitrary

topological or metric spaces. For the continuum-armed bandit setting there are analogous gen-

eralizations where arms are chosen from arbitrary topological or metric spaces [31, 12]. Regret

bounds then often depend on properties of this underlying space like the zooming dimension

introduced in [31] or the near-optimality dimension of [12]. We want to investigate whether

notions and algorithms can be extended to the general RL setting, trying to modify methods

developed for the continuous RL setting under Lipschitz assumption.

A related generalization of the continuous RL setting we want to investigate is the following:

Instead of considering Lipschitz continuous MDPs, one assumes more general classes of MDPs

and tries to obtain regret bounds that depend on some structural parameter of the class of MDPs

to be learned. Here, as a �rst step one has to come up with possible notions of measuring the

�size� of the set of MDPs analogous to the VC dimension in supervised classi�cation problems.

6. The Local Environment

The Chair of Information Technology is the youngest of the four chairs at the Department

of Mathematics and Information Technology of the Montanuniversität Leoben. Peter Auer has

been the head of the institute since its beginning in 2002, while I (the applicant) joined soon

afterwards in 2003, now �lling a permanent position as Associate Professor. There is only one

other researcher employed by the university, Martin Antenreiter. Until recently, two further

PostDocs Odalric-Ambrym Maillard (now at the Technion in Haifa) and Shiau Hong Lim (now

at the national University of Singapure) have been employed by an EC project (CompLACS,

EC project FP7/2007-2013, n◦ 270327). A new project employee (PostDoc) shall be recruited

by summer 2013.
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The institute's members do research in the �eld of machine learning with focus on reinforce-

ment learning on the one hand and computer/cognitive vision on the other hand. The insti-

tute has been involved in a series of national (NFN Cognitive Vision, FWF project S9104-N13

SP4) and international (LAVA, EC project IST-2001-34405, PinView, EC project FP7/2007-

2013, n◦ 216529; PASCAL Network of Excellence, EC project IST-2002-506778; PASCAL2, EC

project FP7/2007-2013, n◦ 216886) research projects, and another FP7 project (ComPLACS,

n◦ 270327). Within these projects, connections to national and European research partners have

been established, from which also the proposed project will bene�t.

The institute can provide all necessary resources needed for hosting another researcher, that

is, a desk and a computer with internet access. Further, a fast server for performing simulation

experiments is at the institute's disposal.

7. Collaborations: Inria Lille, TU Darmstadt

The SequeL group at Inria Lille - Nord Europe (Parc Scienti�que de la Haute-Borne, 40 avenue

Halley, 59650 Villeneuve d'Ascq) is one of the most important centers for reinforcement learning

reasearch in Europe. Researchers at SequeL originate from di�erent �elds, such as computer

science, applied mathematics, and signal processing. Beside the SequeL group there are further

groups at Inria working on control theory, optimization, and statistical learning, respectively,

thus o�ering a perfect environment for collaboration on the proposed research topics.

The applicant has spent 10 months of the previous year at Inria Lille �nanced by the FWF,

working on the precursor project �Structure in reinforcement learning" (FWF:J 3259-N13). Most

of the key publications emerging from the precursor project are collaborations with people from

SequeL. These publications are also the starting point for the proposed project, so that it is of

course planned to continue this successful cooperation.

Also, the other partners in the current EC project CompLACS are candidates for closer collab-

oration. This holds in particular for the Intelligent Autonomous Systems Lab of TU Darmstadt,

which does research in development of learning models and algorithms for robotic systems. While

the focus of our project is on theoretical results, we still think that the ideas developed can be

useful for the real world problems dealt with at TU Darmstadt. Thus, it is planned that the

candidate �lling the project position will not only spend some time at SequeL Lille but also at

TU Darmstadt to learn about the speci�c problems of applying the theoretical �ndings.
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8. Project Duration, Personnel, Research Plan, and Dissemination

In the best case, the project position shall be �lled with a PostDoc who shall be able to make

progress on the proposed topics within two years, starting late 2013 or early 2014. The requested

funding below is based on this best case. However, since experience from other projects has shown

that it is often di�cult to attract suitable PostDocs to Leoben, I would like to leave open the

option of hiring a very good PhD student with su�cient previous knowledge in reinforcement

learning instead. Due to the lower salary, a PhD student then could work for three years on

the project, which is enough time to �nish a PhD and also for catching up in knowledge in

comparison with a PostDoc. In any case, the position will be advertised internationally to �nd

the best possible candidate for the project.

I propose to start working on selection of approximate state representations, as I think that

here �rst results can be achieved quickest. Otherwise, the topics can be worked on rather

independently, so that there is no necessary order in which they should to be addressed. Thus,

it will also depend on the preferences of the project employee what will be done �rst. Before

half-time of the project when �rst results are available, the project employee shall visit Inria

Lille and TU Darmstadt, cf. the previous section on collaborations.

Concerning the dissemination of the results, depending on the kind of results these will be �rst

submitted to suitable conferences like COLT, ICML, or NIPS in order to make �ndings available

as soon as possible. We also aim for journal publication of extended versions of suitable material

in high quality peer reviewed journals.

9. Requested Funding

The requested funding consists of the cost for a PostDoc (two years) and the travel costs for a

stay of three weeks at Inria Lille and TU Darmstadt, the latter calculated (and rounded down)

according to the rates of the RGV (Reisegebührenvorschrift). Travel costs for conference visits

are to be paid from the 5% general costs added.

(in Euro) �rst year second year

PostDoc (40h) 60,610.− 60,610.−
travel costs (Inria Lille) 900.−
travel costs (TU Darmstadt) 1,000.−
subtotal 62,510.− 60,610.−
Total incl. 5% general costs 129,276.−
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