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Scientifc Abstract

1. Wider research context

Reinforcement learning (RL) has been successful in many applications, but theory has not been

able to guarantee reliability and robustness of the used algorithms. In our opinion, one of the

reasons for this is that RL theory focuses on optimization, while most RL problems in practice

are task-oriented and optimality does not play any role. We aim at a restart of RL theory by

replacing the optimality paradigm by a satis�cing criterion.

2. Objectives

We expect that the paradigm shift from optimization to satis�cing will alleviate the development

and analysis of algorithms. Based on approaches and results of a precursor project, we aim at

continuing the development of an alternative RL theory for satis�cing. The goal is to provide

satis�cing algorithms for which we can prove that these are more e�cient in terms of (sample)

complexity than RL algorithms that aim for optimal behavior.

3. Approach

For a start we will stick to the approach of the precursor project, where we considered regret as

performance measure and showed that satis�cing regret (with respect to a given satisfaction level)

is signi�cantly smaller than standard regret (with respect to the optimum). While the respective

performance bounds achieved so far are independent of the horizon, they still depend on the size

of the problem (i.e., number of arms in the bandit setting, size of state-action space for MDPs).

As a next step we want to replace the size by more speci�c problem dependent parameters, also

considering more suitable alternative measures that unlike regret are not worst-case based.

4. Innovation

The results of the precursor project have shown that an achievable satisfaction level provides

an `Archimedean point' that allows to learn with only constant regret, something that is not

possible within the classic optimization setting. Accordingly, although satis�cing is a concept

that has hardly been seriously considered in the context of RL, we believe in its potential to

provide a powerful alternative paradigm for RL.

5. Primary researchers involved

Ronald Ortner (PI)
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1. Introduction

The standard model for reinforcement learning (RL) problems is the Markov decision process

(MDP) setting. Originally introduced by Richard Bellman in the 1950s, the operations research

community developed algorithms and theory for MDPs, interested in the case when an MDP

is explicitly given. In the 1980s, the AI community adopted the MDP framework as model for

learning in an unknown environment described by an MDP, whose parameters now have to be

learned by the learning agent. Theory and algorithms for MDPs that have been provided by

operations research came in handy, as these could be also be used in the reinforcement learning

context. The paradigm of optimization, that is, having the goal of maximizing reward, was

naturally adopted and not further challenged by AI researchers.

In this project we are particularly interested in this aspect: What changes when we weaken

the goal of optimality and are happy with algorithms that perform just good enough instead of

optimally? How big is the gain with respect to complexity and performance? These questions

have already been addressed in a precursor project (cf. Sec. 4 below), which could give some

answers but of course generated new questions that we want to investigate in this project.

In brief, we could show that in satis�cing problems one can have performance guarantees that

are not achievable in the classic optimization setting. This has been accomplished for the simple

multi-armed bandit setting just as for the general MDP setting. What remains to be determined

is the precise form of these performance bounds. That is, currently we have upper bounds for

our algorithms and only prelimiary lower bounds that do not match. It is not even clear what

are the parameters tight bounds will depend on. Beside closing this gap, an advanced question

is to investigate the boundary between satis�cing and optimization, in particular in the form

of algorithms that approach optimization by repeated satis�cing with adapting the satisfaction

level.

2. Setting

Reinforcement learning (RL) is a broad �eld with many di�erent approaches each having

its own focus. We are interested in online reinforcement learning, where the learning agent is

presented a learning environment and has to learn to perform well by learning through trial and

error without having any prior knowledge. Learning tasks are considered to be non-episodic with

no automatic resets to initial states, and the performance criterion will be total resp. average

reward. In spite of the popularity of episodic RL in recent years, we consider this setting to be

the most natural and suitable for generic RL tasks.
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Since the origins of RL exciting applications (starting with Backgammon via autonomous

driving to recent successes like Alpha-GO and partially also ChatGPT) have been developped in

parallel with theoretical contributions which not only provided guarantees for existing approaches

and showed general limits that cannot be overcome by any algorithm, but also provided various

ideas that were applicable in practice. The �rst guarantees that were provided by RL theory

were convergence results that showed that an algorithm would converge to an optimal solution

in the long run (i.e., when the number of steps T → ∞). While such results are valuable as a

justi�cation for the employed algorithms, they have little power in practice, as in any application

the number of learning steps is limited. Even results providing a rate that promises fast (i.e.,

exponential) convergence cannot amend this in general, as the involved constants are often very

large or even unknown.

Originally established in the simplest RL setting, the multi-armed bandit problem, so-called

regret bounds consider an online learning setting, in which the performance of the learner is

compared to that of an optimal policy after any �nite number of steps T . Theoretical results

that bound the regret can really quantify �nite-time performance of an algorithm. On the one

hand, upper bounds provide information about the worst case behavior of a speci�c algorithm,

while lower bounds show that for some problem settings all algorithms have to respect a certain

learning complexity that cannot be improved on.

For the general RL setting with an underlying MDP crucial results have been derived in [18],

showing an upper bound on the regret of Õ(DS
√
AT ) after any T steps for RL in an MDP

with S states, A actions and diameter (i.e., the maximal expected transition time between two

states) D. An accompanying lower bound was of order Ω(
√
DSAT ) [18]. Some improvements

on the upper bound have been made in the meantime. [14] improved the dependence on the

diameter to
√
D, while [15] showed that the diameter in the original bounds can be replaced by

the bias span H := span(λ) of an optimal policy when H is known. Moreover, the algorithm also

works more generally for weakly communicating MDPs. Under the same assumption [40] could

show a best possible upper bound of
√
HSAT . The assumption of knowing the span could be

removed recently in [7], �nally closing the gap between upper and lower bound on the regret.

Within the proposed project we want to target the question whether and to what extent these

bounds can be improved when considering satsi�cing instead of optimization. That is, instead

of comparing to the optimal policy (as in the classic regret), we consider the loss with respect to

a given satisfaction level σ, which we call satis�cing regret, cf. Sec. 4 for details.

4



3. Related Work

3.1. Satis�cing for Bandits. While satis�cing objectives have been considered before, most

respective investigations have been made in the simple bandit setting. Just like for the classic

multi-armed bandit setting there are di�erent questions considered.

The pure-exploration setting when the goal is to identify all arms above the satisfaction level

is considered in [24, 28, 20, 5]. A related problem is to identify all ε-good arms for a given ε [25].

A variant that is closer to our setting is the problem of identifying one or more generally k arms

among the top m arms. Sample complexity bounds for pure exploration are given in [9, 10]. In

these settings one is interested in sample complexity or bounds on the simple regret for a given

con�dence or a certain sample budget. We note that in the online setting it is not su�cient

to pick after an inital exploration phase an arm that is likely to be above the satisfaction level:

Subsequent exploitation will su�er linear regret due to the small error probability that the chosen

arm is not satis�cing.

Concerning online regret bounds, following [21] which proposed a simple index policy for

satis�cing and evaluated it experimentally, [38] shows that the (classic) regret is �nite if the

satisfaction level is chosen to be between the reward of the best and the second-best arm.

The notion of expected satis�cing regret introduced by [33] coincides with ours in a special

case, but considers more generally a Bayesian setting that also takes into account the learner's

belief that some arm is satis�cing. Various bounds on the expected satis�cing regret are given

in [33], including a lower bound as well as upper bounds for problems with Gaussian reward

distributions when using adaptations of the UCL algorithm [32], cf. Sec. 4 for a brief discussion.

A di�erent kind of regret is suggested in [1]. It is assumed that the learner obtains a reward

of 1 if the actual reward of the chosen arm is above a given threshold (which may vary with

time), otherwise the reward is 0. The given regret bounds resemble those in the standard setting

(i.e., are logarithmic in the horizon T ) but with the mean rewards replaced by more parameters

of the reward distributions.

The idea of satis�cing has also been considered as a complementary feature of the classic multi-

armed bandit setting. Under the notion of conservative bandits, the learner aims at learning the

optimal arm but at the same time not falling below a baseline level. An algorithm for this setting

is suggested in [39], which gives regret bounds similar to the classic setting and shows that with

high probability the algorithm stays above the baseline.

A related notion is that of lenient regret, which considers the loss with respect to µ∗ − ϵ for

some ϵ > 0. The setting suggested in [26] is more general as di�erent loss functions can be

considered, but for a special case corresponds to the satis�cing regret we propose yet not with
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respect to a given �xed level but de�ned via the allowed deviation ε from the optimal mean

reward. Beside convergence guarantees for a variant of Thompson sampling it is shown that

when µ∗ > 1− ϵ the lenient regret is constant.

Curiously, the most relevant result has been derived in a di�erent context, that is, in the

setting of multi-objective bandit problems. In [17] regret bounds are derived what also provide

results for the satis�cing regret, the precise form of the respective bound is discussed in Sec. 4

below.

3.2. Satis�cing for MDPs. For the general MDP setting there is not much work on satis�cing.

For robust MDPs the problem of �nding a satis�cing policy is considered in [34]. This approach

not only provides an alternative to the usual worst-case analysis in this setting, it may also be

relevant in the learning context for our project, cf. Sec. 6 below. For Q-learning a satis�cing

variant is presented in [16], for which however only some experimental evaluation is given.

A notion of satis�cing regret is introduced in [4] for an episodic and Bayesian RL setting. It is

however rather concerned with approximating an optimal policy and has little to do with satis�c-

ing in our context. Formalized using rate distortion theory, the paper proposes a generalization

of the PSRL algorithm [37] and gives bounds on the classic (Bayesian) regret which generalize

respective results for bandits [35, 2, 3] and in a special case correspond to those available for

PSRL [29].

More relevant to our setting is work on constrained MDPs (CMDPs). Typically, the goal

in the CMDP setting is to optimize a reward function as in standard MDPs, but on the other

hand satisfy some cost constraint for an additional cost function. Concerning the latter one can

consider the respective regret with respect to constraint violations, which basically corresponds

to our regret with respect to a satisfaction level σ.

Most work on RL in CMDPs considers the discounted [12] or the episodic setting [31, 19,

23, 13]. However, there is some relevant work considering the average reward setting as we do.

Usually, some strong assumptions are made, such as that transition probabilities are known [41],

when it is easy to guarantee that constraints are ful�lled. Ergodic CMDPs are considered in [36],

however the regret from constraint violations after T steps is of order T 2/3 and thus quite large.

The state of the art is [11], whose algorithm on ergodic MDPs has regret (with respect to

the optimal average reward) of order
√
T and a constant violation of the cost constraint. For

weakly communicating MDPs, bounds of order T 2/3 are shown for regret as well as cost constraint

violation. Both bounds are high probability bounds, but the considered reward and cost functions

are assumed to be deterministic. For a brief discussion of these bounds see Sec. 5 below.
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4. The Precursor Project

In the precursor project (TAI 590-N) we were able to come up with the �rst results that were

as surprising as encouraging. First concentrating on the simpler bandit setting, using results

of [8] we could show that when given a satisfaction level σ that can be met (that is, the mean

reward of the optimal arm is above σ), then the (pseudo-)regret with respect to σ after any T

steps is bounded by a constant which is independent of T . That is, the regret does not grow with

the horizon, which is long known to be unavoidable in the standard (optimization) case [22]. Our

results were complemented by a more general algorithm which can be shown to have constant

regret if the requested satis�cing level σ is below the optimal mean reward of an arm, while

having standard logarithmic gap-dependent bounds otherwise. These results were presented at

EWRL 2022 and have been published as [27]. Some preliminary improvements we have are

discussed in Sec. 5 below.

In the more general MDP setting, we were able to obtain analogous results. First, if the optimal

policy has average reward above σ, then the regret with respect to σ is bounded by a constant

independent of the horizon T . Second, we could provide an algorithm which has constant regret

with respect to σ if the optimal average reward ρ∗ > σ and obtains logarithmic regret bounds

similarly as UCRL2 [18] otherwise. These results were �rst presented at EWRL 2023 and then

submitted to Mathematics of Operations Research. The submission received encouraging reviews

and a revision is currently under review.

5. Project Goals

5.1. True Shape of σ-regret.

5.1.1. The Bandit Setting. Although much simpler than the MDP setting, there are still quite a

few open questions on satis�cing in the multi-armed-bandit setting. The classic (pseudo-)regret

after T steps is de�ned as

(1) RT :=
T∑
t=1

(
µ∗ − E [µAt ]

)
,

where µ∗ := maxi µi is the maximal mean reward of an arm.

A straightforward adaptation of the regret when considering satis�cing instead of optimization

is the (satis�cing) σ-regret de�ned in analogy to (1) as

Rσ
T :=

T∑
t=1

max
{
σ − E [µAt ] , 0

}
.
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This natural notion of regret has been investigated in the precursor project [27]. The respective

bounds that were derived are of the form

(2) Rσ
T ≤ const

∑
i:∆σ

i >0

( 1

∆σ
i

+
2∆σ

i

|∆σ
∗ |2

)
,

where ∆σ
i = σ − µi for arms i with mean reward below σ and ∆σ

∗ = µ∗ − σ. These quantities

are similar to the gaps ∆i := µ∗ − µi that appear in (classic) regret bounds [6]. Our bound

improves over the results of [33], which only showed bounds logarithmic in T . An alternative

constant bound on the σ-regret of order log(1/∆S
i )/∆

S
i for each arm i below σ is given in the

already mentioned [17] and in some cases better, in some cases worse than the bound of [27]. In

any case, the bound of [17] does not depend on the gap ∆σ
∗ of the optimal arm to the level σ.

Concerning lower bounds we were at �rst only able to show that in special cases when∆σ
i = ∆σ

∗
the upper bound is tight. In general, it seems not intuitive that the dependence of the regret

with respect to ∆σ
∗ is as in (2). So our �rst research goal is to determine the correct dependence

of the σ-regret on the quantities ∆σ
i and ∆σ

∗ and to accordingly provide tight bounds on the

σ-regret.

For the bandit setting with just two arms we were already able to make some progress and

could show an upper bound on the σ-regret of order log(1/∆σ
∗ )/∆, where ∆ is the classical

gap between the good (i.e., optimal) and the bad arm (which is assumed to be below σ). This

result will be presented at EWRL 2024. We also think that we can show that a lower bound

of log(∆/∆σ
∗ )/∆ holds, but could not yet resolve the contradiction to the upper bound given

in [17]. Generalizing these bounds to the case of arbitrarily many arms has turned out to be not

quite straightforward, but would of course be one of our �rst goals of the project.

5.1.2. The MDP Case. Unlike the bandit setting where the regret only depends on the mentioned

gaps, the results that we have for satis�cing in MDPs have quite a few additional parameters.

These are mainly mixing times that determine how long it takes for some policy until the empirical

distribution approaches the respective stationary distribution induced by the policy. While it

seems intuitive that some additional parameters such as the diameter will occur, which also

appears in lower and upper bounds on the regret in the standard optimization setting, it is

unclear whether additional mixing time related constants of the MDP are actually necessary for

satis�cing regret. In addition, while in the bandit setting we have lower bounds at least for a few

special cases, for the MDP setting we do not have any results beyond the MAB setting. Thus,

while we cannot expect to solve the problem of determining the true shape of the σ-regret in

the MDP case within this project (as the respective question for the optimization setting has
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been closed only recently [7] after more than ten years of research), we at least aim at getting

a bit closer by determining what are the appropriate parameters and providing respective lower

bounds.

5.2. Planning in MDPs for Satis�cing and Alternative Performance Measures. In

the algorithms we have developed so far, the planning subroutines simply use optimization. In

particular, our satis�cing algorithm for the MDP setting computes and executes the optimal

policy of the estimated MDP in exploitation phases. Computation of an optimal policy in MDPs

is usually not considered to be particularly expensive, however obviously scales with the size of

state and action space. However, in large MDPs a satis�cing policy could be found much faster

than an optimal policy (in simple cases e.g. using known planning algorithms such as weighted

A∗ [30]). Of course, here a payo� between complexity and regret has to be considered, as the

regret guarantees for the optimal policy in the empirical MDP will be better than for a satis�cing

policy. It is also an open problem how to formalize this payo� in an appropriate way, a question

that we will investigate.

Another aspect here is that regret is de�ned with respect to the worst case. Accordingly,

respective bounds will necessarily depend on the whole state-action space even when aiming at

satis�cing instead of optimization. In order to take into account that one can obtain a satis�cing

policy much faster one would need to consider di�erent performance measures, a direction we also

plan to explore in the project. Such an alternative measure might also be interesting in the classic

optimization setting, where regret bounds are known to be overly pessimistic, and an alternative

measure could prove to be more relevant for applications in practice. After eliminating the

dependence on the horizon in the precursor project, the goal here would be to obtain performance

guaranatees that do not depend on the size of the state-action space anymore but on problem-

dependent parameters instead.

5.3. From Satis�cing to Optimization. One of the core aspects we are interested in is the

boundary between satis�cing and optimization. In the precursor project we have shown that

satis�cing can be done with just constant regret. This implies that knowing a reference value

that separates the optimal from the best suboptimal average reward one can obtain optimality

with just constant regret, a fact that has been observed in the bandit setting already in [8]. On

the other hand, we known from lower bounds that for learning an optimal policy the regret will

always depend on the horizon T .

We are interested in the phase shift and in algorithms that try to learn an optimal policy

by alternating satis�cing and adapting the reference value for the former. While this will not
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result in overall improved theoretical performance (which is impossible to achive) we expect to

obtain new insights and also hope that this research direction will help to develop algorithms

with improved empirical performance.

5.4. Extension to Multi-Objective RL. We have already mentioned in Sec. 3 that previous

work on multi-objective RL implies results for satis�cing RL. On the other hand, we expect

that �ndings of the project can be generalized to or used in the multi-objective setting. A

generalization of the current result to the multi-objective setting seems to be straightforward

when one aims at satis�cing for all objectives. More interesting is to try to generalize the bounds

derived in [11] for constraint MDPs to the case of random rewards (resp. costs) and from ergodic

to communicating MDPs, which we think should be an achievable goal employing the methods

found in the precursor project. We note that our current results already achieve that for the

case when one is only interested in satis�cing the constraints.

6. Methods

In the precursor project standard methods for MDPs and RL like value iteration, UCB [6],

and UCRL [18] proved to be su�cient for our purposes. In the successor project it will be

necessary to develop new approaches. However, we think that the mentioned algorithms will be

a good starting point. Thus, for the preliminary improvements in the two-armed bandit setting

(cf. Sec. 5.1.1) an appropriate modi�cation of the UCB algorithm could be used that also looks

promising for the setting with an arbitrary number of arms. A respective adaptation of the

algorithm to the MDP setting seems possible. However in this general setting, the development

of new proof techniques will be more crucial.

Concerning the employment of planning algorithms for satis�cing (cf. Sec. 5.2), we will take a

closer look at the wide range of algorithms available in this area (such as the already mentioned

weighted A∗-algorithm) and try to adapt them to work for our purposes. A di�erent approach

that looks promising is that for �nding a satis�cing policy in the context of robust MDPs [34],

which may also be applicable to our RL setting. For the topic of investigating into the limit

between satis�cing and optimization (cf.Sec. 5.3) we have already outlined that we will �rst

look into algorithms that employ a satis�cing approach with adaptive threshold. Finally, for the

multi-objective setting (cf. Sec. 5.4) we expect a combination of UCB/UCRL with one of the

developed satis�cing algorithms to work out.
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7. Applications and Implications

As already noted in the proposal of the precursor project, a small project like ours neither will

be able to solve all problems in RL nor will it cause a �satis�cing turn� in the discipline. However,

we expect to contribute to a complementary alternative to current RL theory with the potential

to reduce the gap to RL applications. The precursor and the current project can only be �rst

steps that has to be followed by further research of more advanced topics, including continuous

state-action spaces, learning of state representations, and implementing domain knowledge into

the considered algorithms. Only when addressing this wide range of questions we will �nally

have a chance to actually bridge RL theory and applications.

For this project we will focus on RL theory, which however does not mean that we want to

disregard practical applications. A student has just recently started to work on a small logistics

domain about storage allocation for his Master project, where we want to see the developed

satis�cing algorithms in action. These experiments shall compare satis�cing to optimization

approaches and will provide valuable feedback concerning the boundary of the two domains (cf.

Sec. 5.3).

8. Ethical and Gender-related Aspects

This is a theoretical computer science project, so there are neither any ethical, safety-related,

regulatory nor any sex-speci�c or gender-related issues that need to be considered. In case some

of the developed algorithms are tested, this will be done on arti�cial sample domains, which does

not involve any data privacy nor safety-related or regulatory issues.
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Appendix 2: Financial Aspects

A2.1. The Local Environment. The Chair of Information Technology is one of the four

chairs at the Department of Mathematics and Information Technology of the Montanuniversität

Leoben and has been founded in 2002. Peter Auer has been the head of the institute since

then, while the applicant joined in 2003 and since 2010 �lls a permanent position as Associate

Professor. The only other researcher employed by the university is Martin Antenreiter.

The research focus of the institute in recent years has been on reinforcement learning, be-

side some involvement in machine learning related projects with the industry. The institute

has also been part of several national (NFN Cognitive Vision, FWF project S9104-N13 SP4)

and international (LAVA, EC project IST-2001-34405, PinView, EC project FP7/2007-2013,

n◦ 216529; PASCAL Network of Excellence, EC project IST-2002-506778; PASCAL2, EC project

FP7/2007-2013, n◦ 216886; ComPLACS, FP7-ICT, n◦ 270327, CHIST-ERA project DELTA)

projects. Within these projects, we have established several connections to national and Euro-

pean research partners, from which the proposed project will bene�t as well.

At the institute we can provide all necessary resources needed for hosting another researcher,

including a desk, a computer with internet access, and a computation server for performing

simulation experiments.

A2.2. Project Duration, Personnel, Research Plan, and Dissemination. We plan to use

the funding to hire a PostDoc for two years, starting mid 2025. Optionally, I would like to leave

open the option of hiring a very good PhD student with su�cient knowledge in reinforcement

learning instead. Due to the lower salary, a PhD student then could work on the project for

a bit more than another year, which is enough time to �nish a PhD and also for catching

up in knowledge in comparison with a PostDoc. In any case, the position will be advertised

internationally to �nd the best possible candidate.

Concerning the research plan, it would be most natural to start with working on the gener-

alization of the preliminary results for the bandit setting with two arms (cf. Sec. 5.1.1) to an

arbitrary number of arms. Otherwise, the topics suggested in Sec. 5 in principle can be worked

on in an arbitrary order. However, personally I �nd investigations into the boundary between

satis�cing and optimization the most interesting part of the project and would start to work on

this topic afterwards.
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Concerning dissemination, we will submit our results to suitable conferences like COLT, ICML,

or NIPS in order to make our research quickly available. Extended versions will be submitted to

high quality peer reviewed journals.

A2.3. Requested Funding. We request funding for research personnel to conduct research

on the topics outlined in the proposal. Given the sophistication of the �eld, only someone with

a high-level education in reinforcement learning theory will be able to successfully work on the

project. Accordingly, we apply for funding a PostDoc with experience in the �eld who will work

full-time for two years. Travel costs for conference visits are to be paid from the 5% general costs

added.

(in Euro) �rst year second year

PostDoc (40h) 84,030.− 89,786.06−
Total incl. 5% general costs 182,506.86−
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