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Abstract. We consider an upper confidence bound algorithm for Mar-
kov decision processes (MDPs) with deterministic transitions. For this
algorithm we derive upper bounds on the online regret (with respect to
an (ε-)optimal policy) that are logarithmic in the number of steps taken.
These bounds also match known asymptotic bounds for the general MDP
setting. We also present corresponding lower bounds. As an application,
multi-armed bandits with switching cost are considered.

1 Introduction

1.1 MDPs with Deterministic Transitions

A Markov decision process (MDP) can be specified as follows. First, there is a
finite set S of states and a finite set of actions A such that for each state s there
is a nonempty set A(s) ⊂ A of actions that are available in s. We assume that
A(s)∩A(s′) = ∅ for s 6= s′, and that A =

⋃

s∈S A(s).1 For a state s ∈ S and an
action a ∈ A(s), a reward function r gives the mean r(s, a) of the random rewards
for choosing a in s. We assume that these random rewards are bounded in [0, 1].
Further, transition probability distributions p(·|s, a) determine the probability
p(s′|s, a) that choosing an action a in state s leads to state s′.

A policy is a function π : S → A that assigns each state s a fixed action
π(s) ∈ A(s). The average reward of a policy π is defined as

ρπ(s0) := lim
T→∞

1

T
·

T−1
∑

t=0

r
(

st, π(st)
)

,

where the process starts in s0, and generally, st is a random variable for the
state at step t.

In MDPs with deterministic transitions, for all states s and all a ∈ A(s)
we assume that p(s′|s, a) = 1 for a unique s′ ∈ S, while p(s′′|s, a) = 0 for all
s′′ 6= s′. Thus each action leads deterministically from one state to another (or
the same) one, so that the transition structure may be considered as a directed
graph (loops allowed) with vertex set S and edge set

⋃

s∈S A(s) = A. As we

1 Actually, it is more usual to assume that the sets A(s) coincide for all states s, yet
for our purposes it is more useful to consider distinct action sets.



assume that the action sets A(s) are pairwise disjoint, the mean reward depends
only on the action (or edge2) in this transition (di)graph, so that we will write
r(a) for the mean reward of edge a. Thus summarizing, a deterministic MDP
may be considered as a directed graph where the edges are labeled with the
respective mean rewards.

We introduce some terminology from graph theory. Given a graph with vertex
set V and a set E ⊆ V 2 of directed edges, an edge (v, v′) ∈ E is said to start in
its initial vertex v and end in its terminal vertex v′. We also say that (v, v′) is
an outgoing edge of v. A (directed) path is a sequence of edges e1, e2, . . . , eℓ such
that for 2 ≤ i ≤ ℓ the edge ei starts in the same vertex in which edge ei−1 ends.
Such a path is called a (directed) cycle, if the initial vertex of e1 is identical to
the terminal vertex of eℓ. Paths and cycles are called simple, if the initial vertices
of all edges are pairwise distinct. In the following, we will often sloppily identify
a simple cycle with the set of its edges.

As we assumed that A(s) 6= ∅ for all s ∈ S, each state has at least one
outgoing edge, so that playing an arbitrary but fixed policy π eventually leads
into a directed simple cycle aπ

1 , aπ
2 , . . . , aπ

ℓ . A policy may induce more than one
such cycle, and the cycle that is eventually reached depends on the initial state.
Generally, any policy π will partition the edge set A into one or more cycles
and a (possible empty) set of transient edges not contained in any cycle. Start-
ing in a transient edge a leads to a cycle, so that each edge can uniquely be
assigned to an induced cycle. Consequently, depending on the initial state s0,
the average reward ρπ of a policy π can be written as ρπ(s0) = 1

ℓ

∑ℓ
i=1 r(aπ

i ),
where aπ

1 , aπ
2 , . . . , aπ

ℓ is the respective induced cycle of π. We are interested in the
optimal policy π∗ that gives maximal reward ρ∗,3 which basically means that
we are looking for a cycle with maximal mean reward.

The first algorithm for finding the optimal cycle mean has been suggested
by Karp [2]. His algorithm has run-time O(|A||S|). As the run-time of Karp’s
algorithm is also Ω(|A||S|), other algorithms have been proposed [3–6] which in
some cases are faster. Value iteration on deterministic MDPs has been studied
as well [7].

We consider the learning setting when the MDP is not known, and a learner
can only observe her current state and the actions she may choose in this state.
As a measure how well a learning algorithm works, we consider its regret after
a finite number of T steps with respect to an optimal policy, defined as

RT := Tρ∗ −
T

∑

t=1

rt,

where rt is the random reward received at step t. When the learner does not
compete with the optimal average reward ρ∗ but only with ρ∗−ε for some ε > 0,
one considers the regret Rε

T with respect to an ε-optimal policy.

2 In the following, we will use the terms action and edge synonymously.
3 It can be shown that allowing time-dependent policies does not increase the achiev-

able maximal reward. This also holds in the general MDP setting (see [1]).



Note that if the transition graph of the MDP is not strongly connected4, the
achievable optimal reward ρ∗ will depend on the initial state (as the optimal
cycle may not be reachable from each initial state). Even if the learner may in
principle reach an optimal cycle from her initial state, as she has first to explore
the transition structure of the MDP, choosing a wrong action may lead into a
suboptimal part of the state space that cannot be left anymore. In this case it
seems fair to compete at each step with the optimal reward achievable in the
strongly connected part containing the learner’s current state.5 As we assume
deterministic transitions, any learner that explores all actions (which obviously
is necessary) will eventually reach a strongly connected part that cannot be left
anymore. Since our proposed learning algorithm will have explored all actions
after at most |S||A| steps (see Proposition 1 below), in the following we may
simply assume that the transition graph is strongly connected, so that ρ∗ depends
only on the MDP, and we may sloppily identify optimal policies with optimal
cycles. The additional regret in the general case is at most |S||A|.

1.2 General Remarks

After exploring the transition structure, the remaining problem is to deal with
the exploitation-exploration problem concerning the rewards. The situation is
similar to a multi-armed bandit problem. However, dealing with deterministic
MDPs that way does not give any satisfying bounds, as in general the number of
cycles is exponential in |S|. In the following, we present an algorithm (a simple
generalization of the UCB1 algorithm of Auer et al. [9]) that achieves logarithmic
regret in the number of steps taken. More precisely, after T steps the regret is

O
(λ|A| log T

∆

)

for an MDP dependent parameter λ ≤ |S| and a gap of ∆ between
ρ∗ and the second-best average reward of a cycle. Apart from the parameter
λ, this bound corresponds to the bound in the original bandit setting as given
in [9].

On the other hand, there are logarithmic regret bounds for the general (aver-
age reward) MDP setting as well. These bounds usually hold under the assump-
tion that the MDP is ergodic, i.e., any two states are connected by any policy.6

The first of these bounds due to Burnetas and Katehakis [10] was recently gener-

alized by Tewari and Bartlett [11]. This latter bound is of order7 O
(κ2

1
|A||S| log T

∆

)

for an MDP dependent parameter κ1, but — as the original bound of [10] —

4 A digraph is called strongly connected if there is a directed path between any two
vertices.

5 This basically has been suggested as one possible approach for learning in multichain
MDPs in [8]. By the way, the alternative suggestion of [8] to compete with mins ρ∗(s),
where ρ∗(s) is the highest achievable reward when starting in s, seems to be too weak.
A lucky learner may reach a part of the MDP in which the reward is larger than
mins ρ∗(s) for any policy. In that case, it seems to be more natural to compete with
the highest reward achievable in that part.

6 Note that this assumption does not hold in our setting.
7 In these bounds for general MDPs, A is the set of actions available in each state, so

that the |A| in our bound corresponds rather to |S||A| in the general MDP setting.



it holds only asymptotically. Finite horizon bounds have been achieved in [12].

However, as the bound is O
(κ2κ2

3
|A||S|5 log T

∆2

)

with MDP dependent parameters
κ2 > κ1 and κ3 < κ2, the dependence on the parameters is worse than in the
bounds of [11].8 Here we achieve finite horizon bounds that basically correspond
to the bounds of [11] in the simpler setting of deterministic MDPs, yet without
the ergodicity assumption.

1.3 Outline

We proceed by introducing the upper confidence bound algorithm UCycle for
the deterministic MDP setting. In Section 3, we prove a logarithmic bound on
the expected regret of UCycle and complement it with a bound that holds
with high probability. Lower bounds are derived as well. Finally, in Section 4 we
consider the setting of multi-armed bandits with switching cost as a special case
of deterministic MDPs.

2 An Upper Confidence Bound Algorithm

As algorithm for the deterministic MDP setting we suggest a simple adaptation
of known upper confidence bound algorithms such as UCB1 [9] (for multi-armed
bandits) or UCRL [12] (for ergodic MDPs). The common idea of such algorithms
is to choose an optimal policy in an optimistic but plausible model of the situa-
tion, where plausibility is represented by confidence intervals for the estimated
parameters (rewards, transition probabilities) of the system.

In the case of deterministic MDPs, the upper confidence bound strategy will
be applied only to the rewards. As the transitions are assumed to be determin-
istic (and the learner is aware of this fact), they can easily be determined with
certainty. Thus, our suggested algorithm UCycle first investigates the transi-
tion structure of the MDP by playing each available action in each state once.
Then an upper confidence bound strategy is applied to the rewards associated
with each action in order to determine the cycle C̃ with the highest average
plausible reward. Here again, plausibility means that the reward is contained in
some suitable confidence interval. The optimal cycle can be computed efficiently
by any of the algorithms from the literature mentioned in the introduction. Af-
ter computing the optimal cycle C̃, the algorithm chooses the shortest route
to a state in C̃ and remains in C̃ for an appropriate number of time steps (cf.
discussion below). The algorithm is depicted in Figure 1 in detail.

Note that UCycle proceeds in episodes of increasing length. In fact, it is a
tempting but bad idea to switch the cycle whenever another cycle looks more

8 In fact, the exponent of |S| in the bounds of [12] can be reduced by using the
perturbation bounds of [13] (as applied e.g. in [14]) instead of those given in [15].
Moreover the exponent of the “gap” in the denominator can be reduced as well by
using the “fillet” technique demonstrated in the proof of Theorem 2 below. Still, the

improved bound of O
`

κ2κ
2

3
|A||S|3 log T

∆

´

usually remains worse than that of [11].



Input: A confidence parameter δ ∈ (0, 1).

Initialization and determination of transition structure:

While some action has not been sampled yet do:

⊲ If there is an unsampled action a ∈ A(s) in the current state s, choose a.

⊲ Otherwise choose shortest path to a state s′ that has already been visited
before and in which there is an unsampled action.9

For episodes m = 1, 2, . . . do

⊲ Calculate optimal cycle for episode m:

Determine an optimal cycle C̃m in the deterministic MDP with transition struc-
ture as determined and whose rewards for an action a are given by

r̃t(a) := r̂t(a) +

s

log |A|t4

δ

2nt(a)
, (1)

where t is the overall number of steps taken so far, r̂t(a) is the average reward
obtained from action a, and nt(a) is the number of times action a was chosen.

⊲ Transition phase: Take the shortest path to a state in the cycle C̃m.

⊲ Cycle phase: Play each action in C̃m for the next min
a∈C̃m

nt(a) time steps,10when
episode m is terminated.

Fig. 1. The UCycle algorithm.

promising. The following example demonstrates that there are very simple cases
where this strategy leads to linear regret.

Example 1. Consider the MDP shown in Figure 2, where not only the transitions
but also all the rewards are assumed to be deterministic. There are obviously
two optimal cycles, viz. the loops in each of the two states with optimal average
reward of 1

2 . If we would take our upper confidence bound approach and choose
the better loop at each step, then each loop would be played only twice, before
the other loop has a higher upper confidence bound (due to the larger confidence
interval). As switching (which hence happens each third step) gives no reward,
the average reward after T steps will be at most 2

3 · 1
2T = 1

3T , so that the regret
of this strategy is Ω(T ). Note that our UCycle algorithm also keeps switching
between the two optimal loops, but the number of switches is O(log T ).

9 The first condition guarantees that the learner need not know the state space in
advance. Note that due to the condition of strong connectivity, the transition graph
will be completely determined as soon as there is no such state s′. That way, only
unsampled actions in the current and already visited states need to be considered in
the loop, so that it is not necessary that the learner knows the number of actions in
advance either.

10 That way, each action in the selected cycle C̃m is chosen the same number of times.
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Fig. 2. Switching policies too often may lead to linear regret.

3 Online Regret Bounds

3.1 Logarithmic Upper Bounds

We start with some properties of UCycle. First, we bound the number of
episodes and the time spent on the determination of the transition graph. Then
we bound the probability that at a given step t a confidence interval fails.

Proposition 1. It takes at most |A||S| steps until UCycle has determined the
transition structure of any deterministic MDP.

Proof. It takes at most |S| − 1 steps to reach a state in which there is an action
to explore, and playing that action takes another step. Thus, |A| distinct actions
can be explored in at most |A||S| steps. ⊓⊔

While this bound is not sharp for arbitrary |S|, it is easy to give examples
where it is sharp at least asymptotically (for arbitrary |S| and |A| → ∞).

Proposition 2. The number of episodes up to some step T > |A| is upper
bounded by |A| log2

2T
|A| .

Proof. First note that a new episode starts only after the number of visits in one
edge a ∈ A has been doubled. Let Ma be the number of episodes which ended
after the number of visits in a has been doubled,11 and let Ta be the number
of steps in these episodes. It is easy to see that Ma ≤ 1 + log2 Ta = log2 2Ta.
Further,

∑

a log2 2Ta is maximal under the constraint
∑

a Ta = T when Ta = T
|A|

for all a, which gives the claimed bound. ⊓⊔

Lemma 1. At each step t, the probability that some true mean reward is larger
than the upper confidence bound value given in (1) is at most δ

t3 , that is,

P
{

r̃t(a) ≤ r(a) for some a ∈ A
}

<
δ

t3
.

Proof. For fixed a ∈ A and n(a) ≤ t, a standard Chernoff-Hoeffding bound (see
e.g. Fact 1 in [9]) shows that

P

{

r̂t(a) +

√

log |A|t4

δ

2nt(a)
≤ r(a)

}

<
δ

|A|t4 .

11 Actually, it may happen that in an episode the number of visits is doubled in more
than one edge. We assume that Ma counts only the episodes where a is the first edge
for which this happens.



A union bound over all actions in A and all possible values of n(a) proves the
lemma. ⊓⊔

The error bound of Lemma 1 allows to derive the following sample complexity
bound on the number of steps taken in suboptimal cycles.

Theorem 1. The number of steps up to step T which UCycle in the cycle
phase spends in cycles whose average reward is smaller than ρ∗ − ε is upper
bounded by

6λ|A| log |A|T 4

δ

ε2

with probability at least 1 − 5
2δ, where λ is the length of the largest simple cycle

in the transition graph of the MDP.

Proof. Let C∗ be an optimal cycle in the MDP, and let C̃m be the cycle chosen
by UCycle in the current episode m. Denote the average reward of a cycle C

in the original MDP (with the real rewards) with ρ(C) and its average reward
in the optimistic MDP (with rewards r̃) with ρ̃(C). We assume throughout the
proof that the confidence intervals given in (1) hold for all t, which by Lemma 1
is true with probability at least 1 − ∑

t
δ
t3 > 1 − 5

4δ. Then

ρ∗ − ρ(C̃m) = ρ(C∗) − ρ(C̃m) ≤ ρ̃(C∗) − ρ(C̃m) ≤ ρ̃(C̃m) − ρ(C̃m)

with probability 1 − 5
4δ. Thus, if at the beginning of an episode the estimation

error ρ̃(C̃m) − ρ(C̃m) is upper bounded by ε, UCycle will choose an ε-optimal
cycle. This will happen in particular if r̃t(a) − r(a) < ε for all actions a ∈ A.
On the other hand, this means that whenever UCycle chooses a cycle C̃m for
which ρ(C̃m) < ρ∗ − ε, then there is an edge a in C̃m for which r̃t(a) − r(a) ≥ ε

at the initial step t of episode m. Now when each edge a was visited sufficiently
often, that is, when for all a ∈ A

nt(a) >
2 log |A|T 4

δ

ε2
, (2)

then r̃t(a) − r̂t(a) < ε
2 and (by a Chernoff-Hoeffding bound analogously to

Lemma 1) also r̂t(a) − r(a) < ε
2 for all a, each with error probability at most

5
4δ. Hence, in this case r̃t(a) − r(a) < ε with probability 1− 5

2δ, and the chosen
cycle is ε-optimal. We are going to determine how many steps in ε-suboptimal
cycles are taken at most, until (2) holds for all actions a.

If UCycle chooses an ε-suboptimal cycle of length |C̃m| in an episode m,
then each edge is visited exactly τm

|C̃m|
times, where τm is the length of episode

m. For a fixed action a, let M(a) be the number of episodes i in which a is
part of the chosen, ε-suboptimal cycle C̃i(a), and (2) does not hold for a at the
beginning of the episode. Further, let τi(a) be the length of the i-th respective
episode. Then denoting the largest simple cycle length in the MDP by λ, we



have that after the last step t′ of episode M(a) − 1,

M(a)−1
∑

i=1

τi(a)

λ
≤

M(a)−1
∑

i=1

τi(a)

|C̃i(a)|
≤ nt′(a) ≤ 2 log |A|T 4

δ

ε2
. (3)

Within the M(a)-th episode, a is finally visited sufficiently often so that (2)
holds. Thus at the first step t′′ of this final episode (note that a may have been
played in the meantime in an optimal episode or in a transition phase)

nt′′(a) ≤ 2 log |A|T 4

δ

ε2
.

By the criterion when an episode ends, the number of visits in a (and indeed in all

other edges as well) in this final episode can be upper bounded by 2· 2 log(|A|T 4/δ)
ε2 ,

so that together with (3),

M(a)
∑

i=1

τi(a)

λ
≤

M(a)−1
∑

i=1

τi(a)

λ
+

4 log |A|T 4

δ

ε2
≤ 6 log |A|T 4

δ

ε2
.

Consequently,
M(a)
∑

i=1

τi(a) ≤ 6λ log |A|T 4

δ

ε2
,

and summing over all actions a ∈ A finishes the proof. ⊓⊔

Together with Proposition 2, Theorem 1 is sufficient to yield a high probability
bound on the regret (Theorem 3 below). For the following bound on the expected
regret we deal with the error probabilities in a slightly more sophisticated way.

Theorem 2. The expected regret of UCycle after T steps with respect to an
ε-optimal policy can be upper bounded as

E(Rε
T ) ≤ 48λ|A| log |A|T 4

δ

ε
+

(

D + 10
3 δ

)

|A| log2
2T
|A| + |S||A|,

where λ is the largest simple cycle length and D the diameter of the transition
graph, i.e. the length of the longest simple path between two vertices.

Proof. First, according to Proposition 2, the regret accumulated in the transition
phases caused by switching from one cycle to another one can be upper bounded
by D|A| log2

2T
|A| , using that by assumption at each step we suffer a loss of at

most ρ∗ ≤ 1.
For the cycle phases, Theorem 1 bounds the number of steps taken in ε-

suboptimal cycles with high probability. Note that the expected regret accumu-
lated in a cycle phase of length τ when C̃m is an ε-optimal cycle is at most τε

(this is due to the fact that episodes end only after all edges in the cycle have



been visited equally often). Now we fix an ε > 0 and partition all suboptimal
episodes12 with respect to their expected regret:13 we summarize all episodes
whose expected regret in the cycle phase is in the same interval [2−i, 2−i+1).
For each ε′ ∈ [2−i, 2−i+1), the number of steps in ε′-suboptimal cycles is upper

bounded by 6λ|A| log(|A|T 4/δ)
ε′2 according to Theorem 1,14 so that the expected

regret in the cycle phases of these episodes is upper bounded by

6λ|A| log |A|T 4

δ

2−2i
· 2−i+1.

Let k ∈ N be such that 2−k ≤ ε < 2−k+1. Then summing up over all i = 0, . . . , k

allows to upper bound the regret by

k
∑

i=0

6λ|A| log |A|T 4

δ

2−2i
· 2−i+1 < 12λ|A| log

( |A|T 4

δ

)

2k+1 ≤ 48λ|A| log |A|T 4

δ

ε
.

Finally, we have to consider the error probability with which the confidence
intervals do not hold. Writing tm for the beginning of the m-th episode, the
regret for a failing confidence interval at tm is at most (tm+1 − tm) ≤ 2tm (this
inequality holds due to the episode termination criterion). Hence, by Lemma 1
and the bound on the number M of episodes of Proposition 2, the expected
regret accumulated due to failing confidence intervals is at most

2

M
∑

m=1

tm · P{confidence interval fails at tm}

≤ 2

M
∑

m=1

T
∑

t=1

t · P{tm = t and confidence interval fails at t}

≤ 2
M
∑

m=1

T
∑

t=1

t · δ

t3
= 2

M
∑

m=1

T
∑

t=1

δ

t2
< 2

M
∑

m=1

5
3δ ≤ 10

3 δ|A| log2
2T
|A| .

Summarizing we obtain

E(Rε
T ) ≤ 48λ|A| log |A|T 4

δ

ε
+

(

D + 10
3 δ

)

|A| log2
2T
|A| + |S||A|,

now also taking into account the regret caused in the exploration phase of the
transition structure according to Proposition 1. ⊓⊔

In order to obtain high probability bounds on the regret from Theorem 1,
we have to consider deviations from the average reward in each cycle.

12 When speaking of an (ε-)suboptimal episode m we mean that the respective chosen
cycle C̃m is (ε-)suboptimal.

13 The following technique was suggested to me by Peter Auer.
14 Actually, we do not use Theorem 1 itself, but rather refer to its proof, as we deal

slightly differently with the error probabilities here.



Theorem 3. With probability 1 − 9
2δ, the regret of UCycle with respect to an

ε-optimal policy after T steps can be upper bounded as

Rε
T ≤ 96λ|A| log |A|T 4

δ

ε
+ D|A| log2

2T
|A| + |S||A| + 16λ|A| log |A|

δ

ε
.

Proof. We basically repeat the proof of Theorem 2, but in order to achieve high
probability bounds on the regret with respect to an ε-optimal cycle, we consider
ε
2 -optimal cycles and reserve ε

2 for the deviation from the average reward. Thus,
another application of Chernoff-Hoeffding shows that in a cycle phase of length
τ the probability that the random average reward is worse than the expected
average reward minus ε

2 can be upper bounded by exp
(

− ετ
2

)

. Now we book

all episodes that are shorter than τ0 := 2 log(|A|/δ)
ε (which corresponds to error

probability δ
|A| ) as having maximal possible regret. Similarly to Proposition 2,

the number of episodes of length < τ0 in which the number of visits of a fixed
action a is doubled (cf. footnote 11) can be upper bounded by log2 2τ0. By the
criterion for episode termination (first, visits in an action are doubled, then the
cycle is completed), we may upper bound the total number of steps taken in
these short episodes (and consequently also the respective regret) by

|A|
⌈log

2
2τ0⌉

∑

i=0

λ · 2i ≤ 8λ|A|τ0 =
16λ|A| log |A|

δ

ε
. (4)

Similarly, the error probabilities of all longer episodes can be (by the doubling
criterion for episode termination) summed up and bounded by

|A|
⌈log

2

2T

|A|
⌉

∑

i=0

exp
(

− ε2iτ0

2

)

= |A|
⌈log

2

2T

|A|
⌉

∑

i=0

(

δ

|A|

)2i

< 2δ.

The rest of the proof is as for Theorem 2, only with ε replaced with ε
2 and

without the error term, so that one obtains including (4) the claimed regret
bound, which holds with probability 1− 9

2δ. ⊓⊔

Note that due to the different handling of the error probabilities in the proofs
of Theorems 2 and 3, Theorem 3 only makes sense for sufficiently small δ < 2

9 ,
while Theorem 2 remains sensible also for larger values of δ.

When ε is chosen sufficiently small, any ε-optimal policy will be optimal,
which yields the following corollary from Theorems 2 and 3.

Corollary 1. Let ∆ := ρ∗−maxπ:ρπ<ρ∗ ρπ be the difference between the average
reward of an optimal cycle and the average reward of the best suboptimal cycle.
Then

E(RT ) ≤ 48λ|A| log |A|T 4

δ

∆
+

(

D + 10
3 δ

)

|A| log2
2T
|A| + |S||A|, and

RT ≤ 96λ|A| log |A|T 4

δ

∆
+ D|A| log2

2T
|A| + |S||A| + 16λ|A| log |A|

δ

∆
,



the latter with probability 1 − 13
2 δ.

Proof. The bound on the expected regret is straightforward from Theorem 2.
For the high probability bound one also has to consider episodes that are ∆-
good without being optimal (which causes additional regret with respect to an
optimal policy). This may happen if the random reward the learner obtains for
a suboptimal cycle is higher than the expected reward. However, this problem
can be solved using a similar strategy as in the proof of Theorem 3. We consider
∆
2 -optimal episodes and reserve ∆

2 for the confidence interval of the random
average reward of a suboptimal cycle. Note that this is different from what we
did in the proof of Theorem 3. There we had to deal with episodes in which the
performance was below the average reward of the played cycle, while here we
have to consider episodes where the performance is above the average reward.

Still, the argument is symmetric to the one given in the proof of Theorem 3.

We consider that episodes shorter than 2 log(|A|/δ)
∆2 have maximal possible regret,

while the random reward of all longer episodes is larger than their expected
reward by at most ∆

2 with a total error probability < 2δ. Together with Theo-
rem 3, this results in the claimed bound which holds with probability at least
1 − 13

2 δ. ⊓⊔

3.2 Lower Bounds

There are two kinds of lower bounds (on the expected regret) in the multi-armed
bandit setting (cf. Section 4.1 below). First, there is a lower bound due to Mannor

and Tsitsiklis [16] of Ω( |B| log T
∆ ) where B is the set of given arms and ∆ is the

difference between the best and the second-best average reward of an arm. For
the case where the reward distribution is allowed to depend on the horizon T , a
lower bound of Ω(

√

|B|T ) has been derived in [17].

It is easy to reproduce these bounds for the deterministic MDP scenario with
|B| being replaced with |A|, when there are |S| ≥ 3 states15 and |A| ≥ 3(|S|−1)
actions (i.e., edges in the transition graph). This is done simply by inflating the
respective multi-armed bandit problem. Figure 3 shows the basic construction
of the transition graph with |A| = 3(|S| − 1). Further actions may be added in
each of the states. The rewards for the loops are chosen as for the arms in the
multi-armed bandit problems that give the lower bounds mentioned above. All
other rewards (for the transitions to different states) are set to 0. Obviously,
learning such a deterministic MDP is equally hard as learning the corresponding
bandit, while the regret is actually larger due to the 0-reward transitions. As the
total number of edges |A| is three times the number of loops |B| (corresponding
to the number of arms in the bandit setting), this gives the claimed lower bounds
for deterministic MDPs.

15 For |S| = 1 one has an ordinary multi-armed bandit problem, while for |S| = 2 a
deterministic MDP with transitions as in Figure 2 works instead of the construction
given here.
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Fig. 3. The transition graph for the lower bound deterministic MDPs.

4 An Application: Bandits with Switching Cost

4.1 Setting

A special case of practical relevance is the setting of (stochastic) multi-armed
bandits with switching cost. In ordinary multi-armed bandit problems, a learner
has to choose an arm from a (usually finite) set B. Choosing b ∈ B gives random
reward ∈ [0, 1] with mean r(b), and the learner tries to maximize her accumulated
rewards. This corresponds to a (trivially deterministic) single state MDP.

It is a natural constraint to assume that the learner may switch arms not
for free, but that she has to pay a fixed cost of γ > 0 when switching from an
arm a to an arm a′ 6= a. This can be interpreted as a negative reward of −γ for
switching arms.

Bandit settings with switching cost have mainly been considered in the eco-
nomics literature (for an overview see [18]). Even though most of this literature
deals with the optimization problem when the whole setting is known, there
is also some work on the problem when the learner has no primary knowledge
of the payoffs of the individual arms. In the wake of the seminal paper of Lai
and Robbins [19], which dealt with the ordinary multi-armed bandit problem,
there was an adaptation of their approach to the setting with switching costs by
Agrawal et al. [20]. Their bounds later were improved by Brezzi and Lai [21].
However, as the original bounds of [19], the bounds given in [20, 21] are only
asymptotic in the number of steps. From our results for deterministic MDPs it
is easy to obtain logarithmic bounds that hold uniformly over time.

4.2 Bandits with Switching Cost as Deterministic MDPs

Translated into the deterministic MDP setting a multi-armed bandit problem
with arm set B and switching cost γ corresponds to a complete digraph with |B|
vertices, each with loop. These loops have mean rewards according to the actions
in B, while all other edges in the graph have deterministic negative reward of
−γ. Note that the situation in Example 1 is an MDP corresponding to a bandit
problem with switching cost. Hence, switching arms too often is also harmful in
the simpler setting of bandits with switching cost.

In fact, the situation is a little bit different to the deterministic MDP set-
ting, as in the bandit setting it is assumed that the learner knows the cost for



switching. With this knowledge, it is obviously disadvantageous to choose a cy-
cle that is not a loop in some state. Hence, a sensible adaptation of UCycle

would choose the loop in the state that has the highest upper confidence bound
value. This corresponds to the UCB1 algorithm of Auer et al. [9] with the only
difference being that increasing episodes are used (which is necessary to obtain
sublinear regret as Example 1 shows). Indeed, Auer et al. [9] have already pro-
posed an algorithm called UCB2 that also works in episodes and whose regret
(including switching costs) is also logarithmic in T .

Although due to the negative switching costs, the rewards are not in [0, 1], it
is easy to adapt the bounds we have derived in the deterministic MDP setting.
We have already argued that it is sufficient to look for optimal cycles among the
loops in each state, so that λ can be chosen to be 1. Moreover, D = 1. However,
as switching costs γ, the transition term in the bounds has to be multiplied by
γ. This yields the following bounds.

Corollary 2. The regret of UCycle in the multi-armed bandit setting with |B|
arms and switching cost γ can be upper bounded as

E(RT ) ≤ 48|B| log |B|T 4

δ

∆
+

(

γ + 10
3 δ

)

|B| log2
2T
|B| , and

RT ≤ 96|B| log |B|T 4

δ

∆
+ γ|B| log2

2T
|B| +

16|B| log |B|
δ

∆
,

the latter with probability 1 − 13
2 δ.

Indeed, in the bandit setting a more refined analysis is possible, so that one
easily achieves bounds of the form

∑

b∈B:r(b)<r∗

const · log T
δ

r∗ − r(b)
+ γ|B| log2

2T
|B| , where r∗ := maxb∈B r(b)

as given in [9] (apart from the switching cost term) by adapting the proof to
the episode setting (which gives slightly worse constants in the main term than
in [9]). As all this is straightforward, we neither bother to give the precise bounds
nor further details concerning the proof.

Of course, the deterministic MDP setting also allows to deal with settings
with individual switching costs or where switching between certain arms is not al-
lowed. In these more general settings one trivially obtains corresponding bounds
with γ replaced by the cost of the most expensive switch between any two arms.
This switch need not be performed in a single step, as it may be cheaper to
switch from b to b′ via a sequence of other arms.16

16 Note however, that when not switching directly, the learner not only has to pay
switching costs but also loses time and reward by choosing the probably suboptimal
intermediate arms. There is a similar problem in the original UCycle algorithm, as
taking the shortest path to the assumed best cycle may not be optimal. Generally, in
order to solve this problem one has to consider bias- or Blackwell-optimal policies [1].
However, as this has no influence on the regret bounds, we do not consider this
further.



Finally, we would like to remark that the episode strategy also works well
in more general bandit settings, such as continuous bandits with Lipschitz con-
dition. Such settings were considered e.g. in [22, 23], and it is easy to modify
e.g. the proposed algorithm CAB of [22] to achieve bounds when switching costs
are present. As in the settings mentioned above, the main term of the bounds
remains basically the same with slightly worse constants. We note that these
bounds are not logarithmic anymore and neither is the switching cost term.

5 Conclusion

Although usually there is some kind of transition (or mixing time) parameter in
regret bounds for general MDPs (e.g. the κi in the bounds of [12, 11] mentioned
above), it is not clear whether the largest simple cycle length parameter λ is
necessary in regret bounds for deterministic MDPs. Interestingly, the parameter
λ and the diameter D (which may be considered as an alternative transition
parameter of the MDP) are in general not comparable to each other. On the
one hand, complete graphs have largest possible λ = |S| and smallest possible
diameter D = 1. On the other hand, there are also graphs with large diameter
and small λ as Figure 4 shows.
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Fig. 4. Graph with λ = 3 and diameter D = |S|−1

2
.

A related question is what optimal bounds look like in the case of general
MDPs with known transition probabilities. In particular, also in this setting it
is an interesting question whether in such bounds the appearance of a transition
parameter is necessary. A similar scenario has already been considered in [24].
However, in [24] the rewards are allowed to change over time, which makes learn-
ing more difficult, so that the achieved O(

√
T ) bounds (including a transition

parameter) are best possible.
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