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Abstract

We consider an upper confidence bound algorithm for learning in Markov de-
cision processes with deterministic transitions. For this algorithm we derive
upper bounds on the online regret with respect to an (ε-)optimal policy that
are logarithmic in the number of steps taken. We also present a corresponding
lower bound. As an application, multi-armed bandits with switching cost are
considered.
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1. Introduction

This paper considers learning in Markov decision processes (MDPs) with de-
terministic transitions. Unlike in general MDPs, a learner can easily determine
the MDP’s transition structure. After that, the remaining problem is to deal
with the exploitation-exploration problem concerning the rewards. Thus, the
situation is similar to a multi-armed bandit problem. However, dealing with de-
terministic transition MDPs that way does not give any satisfying bounds, as in
general the number of different policies to consider is exponential in the number
of states. In the following, we present an algorithm (a simple generalization of
the UCB1 algorithm of Auer et al. [2]) that achieves logarithmic regret in the
number of steps taken. More precisely, after T steps the regret is O

( |A| log T
∆

)
for MDPs with action space A and a gap of ∆ between the optimal and the
second-best average reward of a deterministic policy. We point out that unlike
in the general MDP setting where A usually is the set of actions available in
each single state, here we assume that each state s has an individual set A(s)
of available actions, and A is the union of these disjoint sets. Thus, |A| in our
setting corresponds to |S||A| in the more usual setting with S being the state
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space. Note that our bound corresponds to the bound in the original bandit
setting as given by Auer et al. [2].

There are also logarithmic regret bounds for general (average reward) MDPs
with state space S and a set of actions A available in each state. The first of
these bounds due to Burnetas and Katehakis [3] was recently generalized by
Tewari and Bartlett [4] (at the cost of a worse constant in the bound). This
latter bound is of order O

(κ2|A||S| log T
∆

)
for an MDP dependent parameter κ,

but — as the original bound of Burnetas and Katehakis [3] — it holds only
asymptotically and makes the assumption that the MDP is ergodic, i.e., any
two states are connected by any policy. We do not make this assumption in our
setting.

Finite horizon bounds have been achieved by Auer and Ortner [5] and have
further been improved by Auer et al. [6]. This improved bound of O

(D2|A||S|2 log T
∆

)
for an MDP dependent parameter D has slightly worse dependence on the pa-
rameters than the bound of Tewari and Bartlett [4], yet it holds more generally
in communicating MDPs, where each two states are connected by a suitable pol-
icy. Recently, modifying algorithm and methods of Auer et al. [6], Bartlett and
Tewari [7] managed to replace the parameter D in the mentioned regret bound
with a smaller parameter D1 ≤ D. Moreover, their bound also holds when the
MDP has some transient states that are not reachable under any policy. How-
ever, this bound is only obtained when the learner knows an upper bound on
the parameter D1. In case the learner has no such upper bound, a doubling
trick can be applied which however deteriorates the bound’s dependence on the
number of states from |S| to |S|3/2.

The MDP dependent parameters in the mentioned logarithmic bounds are
transition parameters (roughly, the expected time needed to connect either any
two states [4, 6], or any state with some particular state [7], respectively). In the
general MDP setting such a parameter is necessary as the lower bounds given by
Auer et al. [6] and Bartlett and Tewari [7] show. In the deterministic transition
case we achieve finite horizon bounds whose main term is not dependent on any
similar parameter. The diameter of the MDP’s underlying transition graph only
appears in an additional term stemming from the costs incurred by switching
policies. Thus, MDPs with deterministic transitions resemble more the multi-
armed bandit case (with some kind of switching cost) than the general MDP
case.

The cost of deriving finite horizon bounds instead of asymptotic bounds is
usually that optimality is lost. Thus, while the asymptotic bound of Burnetas
and Katehakis [3] was shown to be optimal, there is still a gap between the
lower and upper bound on the finite horizon regret given by Auer et al. [6]. In
our case, it is possible to come at least quite close to optimality. We give a
lower bound on the regret that matches the main term of the upper bounds.
Concerning the term for switching policies, we will indicate that such a term is
necessary as well. However, this lower bound on the switching cost term does
not quite match the switching cost term of the upper bound obtained for our
algorithm.
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1.1. Outline
We proceed with definitions and some basic observations concerning MDPs

with deterministic transitions. Section 3 then introduces the upper confidence
bound algorithm UCycle for the considered deterministic transition MDP set-
ting. In Section 4, we prove a logarithmic bound on the expected regret of
UCycle and complement it with a bound that holds with high probability. A
lower bound is derived as well. Finally, in Section 5 we consider the setting
of multi-armed bandits with switching cost as a special case of deterministic
transition MDPs.

2. MDPs with Deterministic Transitions

A Markov decision process (MDP) [8] can be specified as follows. There is a
finite set of states S and a finite set of actions A such that for each state s there
is a nonempty set A(s) ⊂ A of actions that are available in s. We assume that
A(s) ∩ A(s′) = ∅ for s 6= s′, and A =

⋃
s∈S A(s). Actually, it is more usual to

assume that the sets A(s) coincide for all states s, yet for our purposes it is more
useful to consider distinct action sets. For a state s ∈ S and an action a ∈ A(s)
transition probability distributions p(·|s, a) determine the probability p(s′|s, a)
that choosing a in s leads to state s′. Further, a reward function r gives the
mean r(s, a) of the random reward obtained for choosing action a in state s.
We assume that successively choosing action a in state s gives random rewards
r1(s, a), r2(s, a), . . ., which are independent and identically distributed according
to an unknown probability distribution with support in [0, 1]. Generally, the
rewards ri(s, a) and rj(s′, a′) shall be independent for all states s, s′, all actions
a ∈ A(s), a′ ∈ A(s′), and all i, j ∈ N.

A policy is a function π : S → A that assigns each state s a fixed action
π(s) ∈ A(s). The average reward of a policy π is defined as

ρπ(s0) := lim
T→∞

1
T
·

T−1∑
t=0

r
(
st, π(st)

)
,

where the process starts in s0, and generally, st is a random variable for the
state at step t.

In MDPs with deterministic transitions, for all states s and all a ∈ A(s) we
assume that p(s′|s, a) = 1 for a unique s′ ∈ S, while p(s′′|s, a) = 0 for all s′′ 6= s′.
Thus each action leads deterministically from one state to another (or the same)
state, so that the transition structure may be considered as a directed graph
(loops allowed) with vertex set S and edge set

⋃
s∈S A(s) = A. Accordingly,

in the following we will use the terms action and edge synonymously. As we
assume that the action sets A(s) are pairwise disjoint, the mean reward r(s, a)
depends only on the edge a in this transition (di)graph, so that we will write
r(a) for the mean reward of edge a. Similarly, ri(a) will denote the random
reward for the i-th visit in edge a. Summarizing, a deterministic transition
MDP may be considered as a directed graph where the edges are labeled with
the respective mean rewards.
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We introduce some terminology from graph theory. Given a graph with
vertex set V and a set E ⊆ V 2 of directed edges, an edge (v, v′) ∈ E is said
to start in its initial vertex v and end in its terminal vertex v′. We also say
that (v, v′) is an outgoing edge of v. A (directed) path is a sequence of edges
e1, e2, . . . , e` such that for 2 ≤ i ≤ ` the edge ei starts in the same vertex in
which edge ei−1 ends. Such a path is called a (directed) cycle, if the initial
vertex of e1 is identical to the terminal vertex of e`. Paths and cycles are called
simple, if the initial vertices of all edges are pairwise distinct. In the following,
we will often sloppily identify a simple cycle with the set of its edges.

As we assume that A(s) 6= ∅ for all s ∈ S, each state has at least one
outgoing edge, so that playing an arbitrary but fixed policy π eventually leads
into a directed simple cycle aπ

1 , aπ
2 , . . . , aπ

` . A policy may induce more than one
such cycle, and the cycle that is eventually reached depends on the initial state.
Generally, any policy π will partition the edge set A into one or more cycles and
a (possible empty) set of transient edges not contained in any cycle. However,
starting in such a transient edge leads to a cycle, so that each edge can be
uniquely assigned to an induced cycle. Consequently, depending on the initial
state s0, the average reward ρπ of a policy π can be written as

ρπ(s0) =
1
`

∑̀
i=1

r(aπ
i ),

where aπ
1 , aπ

2 , . . . , aπ
` is the respective cycle induced by π and s0. We are inter-

ested in the optimal policy π∗ that gives maximal reward ρ∗,1 which basically
means that we are looking for a cycle with maximal mean reward.

As one step in our suggested algorithm for the learning setting is to de-
termine an optimal cycle (in an optimistic estimate of the MDP), we briefly
point out possibilities how to deal with this task. The first algorithm for finding
the optimal cycle mean in a labeled digraph has been suggested by Karp [9].
His algorithm is based on a formula which expresses the optimal cycle mean
via optimal weights wk(v) of paths of length k from a fixed source vertex to
the vertex v. The weights wk(v) can be calculated via a recurrence relation,
which results in an algorithm with run-time O(|A||S|) and Ω(|A||S|). For our
purposes Karp’s algorithm is in principle sufficient. Still, some refinements are
possible [10] which improve the run-time in some cases. For an overview of
algorithms (some dealing with more general problems [11, 12]) and their exper-
imental evaluation see [13]. Finally, note that as for general MDPs standard
value iteration may be used to find an optimal cycle. The run-time behavior
of value iteration on MDPs with deterministic transitions has been studied by
Madani [14].

We consider the learning setting when the MDP is not known and a learner
can only observe her current state and the actions she may choose in this state.

1It can be shown that allowing time-dependent policies does not increase the achievable
maximal reward. This also holds in the general MDP setting (see Puterman [8]).
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As a measure how well a learning algorithm works, we consider its regret after
a finite number of T steps with respect to an optimal policy, defined as

RT := Tρ∗ −
T∑

t=1

rt,

where rt is the random reward received by the algorithm at step t. We also
consider the regret RT,ε with respect to an ε-optimal policy, when the learner
does not compete with the optimal average reward ρ∗ but only with ρ∗ − ε for
some ε > 0.

Note that if the transition graph of the MDP is not strongly connected2, the
achievable optimal reward ρ∗ will depend on the initial state (as the optimal
cycle may not be reachable from each initial state). Even if the learner may
in principle reach an optimal cycle from her initial state, as she first has to
explore the transition structure of the MDP, choosing a wrong action may lead
into a suboptimal part of the state space that cannot be left anymore. In this
case it seems fair to compete at each step with the optimal reward achievable
in the strongly connected part containing the learner’s current state.3 As we
assume deterministic transitions, any learner that explores all actions (which
in general is obviously necessary) will eventually reach a strongly connected
part that cannot be left anymore. Since our proposed learning algorithm will
have explored all actions after at most |S||A| steps (see Proposition 2 below),
in the following we may simply assume that the transition graph is strongly
connected, so that ρ∗ depends only on the MDP, and we may sloppily identify
optimal policies with optimal cycles. The additional regret in the general case
is at most |S||A|.

3. An Upper Confidence Bound Algorithm

As algorithm for the deterministic transition MDP setting we suggest a sim-
ple adaptation of known upper confidence bound algorithms such as UCB1 [2]
(for multi-armed bandits) or UCRL2 [6] (for communicating MDPs). The com-
mon idea of such algorithms is to choose an optimal policy in an optimistic but
plausible model of the situation, where plausibility is specified by confidence
intervals for the estimated parameters (rewards, transition probabilities) of the
system.

2A digraph is called strongly connected if there is a directed path between any two vertices.
Note that a deterministic transition MDP is communicating iff the transition graph is strongly
connected.

3This basically has been suggested as one possible approach for learning in general (i.e.,
not necessarily communicating) MDPs by Kearns and Singh [15]. By the way, the alternative
suggestion of Kearns and Singh [15] to compete with mins ρ∗(s), where ρ∗(s) is the highest
achievable reward when starting in s, seems to be too weak. A lucky learner may reach a
part of the MDP in which the reward is larger than mins ρ∗(s) for any policy. In that case,
it seems to be more natural to compete with the highest reward achievable in that part.
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Input: A confidence parameter δ ∈ (0, 1).

Initialization and determination of transition structure:

While some action has not been sampled yet do:

B If there is an unsampled action a ∈ A(s) in the current state s,
choose a.

B Otherwise choose shortest path to a state s′ that has already been
visited before and in which there is an unsampled action.4

For episodes i = 1, 2, . . . do

B Calculate optimal cycle for episode i:
Determine an optimal cycle C̃i in the MDP with transition structure as
determined and whose rewards for any action a are given by

r̃t(a) := r̂t(a) +

√
log |A|t4

δ

2nt(a)
, (1)

where t is the overall number of steps taken so far, r̂t(a) is the average
reward obtained from action a, and nt(a) is the number of times action a
was chosen.

B Transition phase: Take a shortest path to a state in the cycle C̃i.

B Cycle phase: Run through the whole cycle C̃i for mina∈C̃i
nt(a) times,5when

episode i is terminated.

Figure 1: The UCycle algorithm.

In the case of deterministic transition MDPs, the upper confidence bound
strategy will be applied only to the rewards. As the transitions are assumed to
be deterministic (and the learner is aware of this fact), they can easily be deter-
mined with certainty. Thus, our suggested algorithm UCycle first investigates
the transition structure of the MDP by playing each available action in each
state once. Then an upper confidence bound strategy is applied to the rewards
associated with each action in order to determine the cycle C̃ with the highest
average plausible reward. As indicated above, plausibility means that the re-
ward is contained in some suitable confidence interval. The optimal cycle can be
computed efficiently by any of the algorithms from the literature mentioned in
the introduction. After computing the optimal cycle C̃, the algorithm chooses
the shortest route to a state in C̃ and remains in C̃ for an appropriate number
of time steps (cf. discussion below). The algorithm is depicted in Figure 1.

Note that UCycle proceeds in episodes of increasing length. In fact, it is
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Figure 2: Switching policies too often may lead to linear regret.

a tempting but bad idea to switch the cycle whenever another cycle looks more
promising. The following example demonstrates that there are very simple cases
where this strategy leads to linear regret.

Example 1. Consider the MDP shown in Figure 2, where not only the tran-
sitions but also all the rewards are assumed to be deterministic. There are
obviously two optimal cycles, viz. the loops in each of the two states with opti-
mal average reward of 1

2 . If we would take our upper confidence bound approach
and choose the more promising loop at each step, then each loop would be played
only twice, before the other loop has a higher upper confidence bound (due to the
larger confidence interval). As switching (which hence happens each third step)
gives no reward, the average reward after T steps will be at most 2

3 ·
1
2T = 1

3T ,
so that the regret of this strategy is Ω(T ). Note that our UCycle algorithm
also keeps switching between the two optimal loops, but the number of switches
is O(log T ).

4. Online Regret Bounds

4.1. Logarithmic Upper Bounds
The bounds in this section improve the respective bounds of the previous

version of this paper [1] which contained an additional factor λ, the largest
simple cycle length in the transition graph. The main idea of the proof of the
original bounds [1] was to determine a sufficient precision for the estimates of
the rewards in order to guarantee the optimality of the chosen cycle C̃i. Unlike
that, for the bounds given below the intuition is that the suffered regret is upper
bounded by the sum of the lengths of the confidence intervals.

We start with some basic properties of UCycle. First, we bound the number
of episodes and the time spent on the determination of the transition graph.
Then we bound the probability that at a given step t a confidence interval fails.

Proposition 2. It takes at most |A||S| steps until UCycle has determined the
transition structure of any deterministic transition MDP.

4The first condition guarantees that the learner need not know the state space in advance.
Note that due to the condition of strong connectivity, the transition graph will be completely
determined as soon as there is no such state s′. That way, only unsampled actions in the
current and already visited states need to be considered in the loop, so that it is not necessary
that the learner knows the number of actions in advance either.

5That way, each action in the selected cycle C̃i is chosen the same number of times.
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Proof. It takes at most |S| − 1 steps to reach a state in which there is an action
to explore, and playing that action takes another step. Thus, |A| distinct actions
can be explored in at most |A||S| steps.

While this bound is not sharp for arbitrary |S|, it is easy to give examples
where it is sharp at least asymptotically (for arbitrary |S| and |A| → ∞).

Proposition 3. The number of episodes up to some step T > |A| is upper
bounded by |A| log2

2T
|A| .

Proof. First note that a new episode starts only after the number of visits in one
edge a ∈ A has been doubled. Let Ma be the number of episodes which ended
after the number of visits in a has been doubled, and let Ta be the number of
steps in these episodes. As it may happen that in an episode the number of
visits is doubled in more than one edge, we assume that Ma and Ta count only
the episodes/steps where a is the first edge for which this happens. It is easy
to see that Ma ≤ 1 + log2 Ta = log2 2Ta for Ta > 0. Further,

∑
a log2 2Ta is

maximal under the constraint
∑

a Ta = T when Ta = T
|A| for all a, which gives

the claimed bound.

Lemma 4. (i) At each step t, the probability that some true mean reward is
larger than the upper confidence bound value given in (1) is at most δ

t3 , that is,

P
{
r̃t(a) < r(a) for some a ∈ A

}
≤ δ

t3
.

(ii) Moreover, for each step t, it holds that

P
{

r̃t(a)− r(a) > 2
√

log(|A|t4/δ)
2nt(a) for some a ∈ A

}
≤ δ

t3
.

For the proof we apply the following special case of Hoeffding’s inequality,
which we will also need further down below.

Lemma 5 (Hoeffding’s inequality [16]). Let X1, X2, . . . , Xn be independent
random variables with values in the unit interval [0, 1], and let Sn be the sum
X1 + . . . + Xn. Then

P
{
Sn − E(Sn) > nε

}
≤ exp(−2ε2n),

and P
{
E(Sn)− Sn > nε

}
≤ exp(−2ε2n).

Proof of Lemma 4. For given a ∈ A we have by Lemma 5 for all t ∈ N and all
n ≤ t,

P
{

1
nt(a)

nt(a)∑
i=1

ri(a) +
√

log(|A|t4/δ)
2nt(a) < r(a)

∣∣∣∣ nt(a) = n

}
≤ δ

|A|t4
.
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Because r̂t(a) = 1
nt(a)

∑nt(a)
i=1 ri(a), a union bound over all possible values of

nt(a) and all actions in A proves claim (i). The second statement follows anal-
ogously from the symmetric

P
{

r̂t(a)−
√

log(|A|t4/δ)
2nt(a) > r(a)

∣∣∣ nt(a) = n
}
≤ δ

|A|t4
.

The error bounds of Lemma 4 allow to derive the following sample complex-
ity bound on the number of steps taken in suboptimal cycles. The bound is
logarithmic in the total number of steps taken and grows linearly with the total
number of actions (i.e., the number of edges in the transition graph – recall that
this corresponds to |S||A| in the standard MDP setting).

Theorem 6. The number of steps up to step T which UCycle (with input
parameter δ) in the cycle phase spends in cycles whose average reward is smaller
than ρ∗ − ε is upper bounded by

12 |A| log |A|T 4

δ

ε2
,

provided that the confidence intervals given in Lemma 4 hold at the beginning of
each episode. This latter condition holds with probability at least 1− 5

2δ.

Proof. Our assumption is that the confidence intervals given in Lemma 4 (i)
and (ii) hold at the beginning of each episode. Note that this is assumption is
guaranteed in particular when these confidence intervals hold for all t, which is
true with probability at least 1− 2

∑
t

δ
t3 > 1− 5

2δ.
Let Mε be the set of all indices i of ε-bad episodes where UCycle chooses

a cycle C̃i with expected reward < ρ∗ − ε. Further, write τi for the length of
the cycle phase of episode i. Finally, denote the average reward of a cycle C in
the original MDP (with the real rewards) with ρ(C) and its average reward in
the optimistic MDP (with rewards r̃) with ρ̃(C). We are interested in the value

∆ε :=
∑

i∈Mε

(
ρ∗ − ρ(C̃i)

)
τi, (2)

which is basically the expected regret accumulated in these ε-bad episodes.
Writing Nε :=

∑
i∈Mε

τi for the total number of steps taken in the cycle phases
of ε-suboptimal episodes gives the lower bound

∆ε ≥ εNε. (3)

In the rest of the proof we are going to derive also an upper bound on ∆ε in
terms of Nε, which together with (3) will allow us to derive the claimed sample
complexity bound.

Let C∗ be an optimal cycle in the MDP. Then by our assumption on the
confidence intervals we have by Lemma 4 (i)

ρ∗ = ρ(C∗) ≤ ρ̃(C∗) ≤ ρ̃(C̃i). (4)
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Further, writing ti for the last step before episode i, due to (4), ∆ε can be upper
bounded as

∆ε ≤
∑

i∈Mε

(
ρ̃(C̃i)− ρ(C̃i)

)
τi

=
∑

i∈Mε

(
1
|C̃i|

∑
a∈C̃i

r̃ti
(a)− 1

|C̃i|

∑
a∈C̃i

r(a)
)

τi

=
∑

i∈Mε

∑
a∈C̃i

τi

|C̃i|
(
r̃ti(a)− r(a)

)
. (5)

Now let τi(a) denote the number of times edge a is visited in the cycle phase of
episode i. Then we may rewrite (5) as

∆ε ≤
∑

i∈Mε

∑
a∈C̃i

τi(a)
(
r̃ti(a)− r(a)

)
=

∑
a∈A

∑
i∈Mε

τi(a)
(
r̃ti(a)− r(a)

)
,

because τi(a) = 0, if a /∈ C̃i. Application of Lemma 4 (ii) shows that

∆ε ≤
∑
a∈A

∑
i∈Mε

2τi(a)

√
log(|A|t4i /δ)

2nti(a)

≤
√

2 log |A|T 4

δ

∑
a∈A

∑
i∈Mε

τi(a)√
nti(a)

. (6)

Now one can show that (see Lemma 14 and its proof in Appendix A)∑
i∈Mε

τi(a)√
nti(a)

≤
(
1 +

√
2
)√

nε(a),

where nε(a) is the total number of visits (up to the final step T ) in edge a in
the cycle phases of episodes with index in Mε. This yields from (6)

∆ε <

√
12 log |A|T 4

δ

∑
a∈A

√
nε(a).

Since the term
∑

a∈A

√
nε(a) under the constraint

∑
a∈A nε(a) = Nε is maximal

when nε(a) = Nε/|A| for each a ∈ A (so that
∑

a∈A

√
nε(a) =

√
|A|Nε), it

follows that

∆ε <

√
12|A|Nε log |A|T 4

δ . (7)

Combining (3) and (7) gives

εNε <

√
12|A|Nε log |A|T 4

δ .

Calculating Nε then gives the claimed

Nε <
12|A| log |A|T 4

δ

ε2
.
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Together with Proposition 3, Theorem 6 is sufficient to yield a high proba-
bility bound on the regret (Theorem 8 below). For the following bound on the
expected regret we deal with the error probabilities in a slightly different way.

Theorem 7. The expected regret of UCycle (with input parameter δ) after T
steps with respect to an ε-optimal policy is upper bounded as

E(RT,ε) ≤
12 |A| log |A|T 4

δ

ε
+

(
D + 20+15D

12 δ
)
|A| log2

2T
|A| + |S||A|,

where D is the diameter of the transition graph, i.e. the length of the longest
among all shortest simple paths between any pair of vertices.

Proof. The way in which we derive the bound on the expected regret from
Theorem 6 is different from the one employed in the previous version of this
paper [1] and gives slightly better constants.

First, according to Proposition 3, the regret accumulated in the transition
phases caused by switching from one cycle to another one can be upper bounded
by D|A| log2

2T
|A| , using that by assumption at each step we suffer a loss of at

most ρ∗ ≤ 1.
For the analysis of the cycle phases, we use the notation introduced in the

proof of Theorem 6. Then the expected regret R◦
T,ε accumulated in the cycle

phases can be written as

R◦
T,ε =

∑
i∈Mε

(
ρ∗ − ε− ρ(C̃i)

)
τi

=
∑

i∈Mε

(
ρ∗ − ρ(C̃i)

)
τi −

∑
i∈Mε

ετi,

≤ ∆ε (8)

according to the definition (2) of ∆ε. Note that the expectation here is only
taken with respect to the random fluctuations of the rewards obtained in each
episode. There are still the random values Mε, Ci, and τi in R◦

T,ε. However,
we will bound R◦

T,ε independent of these random values to obtain a bound on
E(RT,ε). By (8) and (7) we obtain

R◦
T,ε ≤

√
12|A|Nε log |A|T 4

δ . (9)

Now from Theorem 6 we know that

Nε ≤
12|A| log |A|T 4

δ

ε2
,

provided the confidence intervals for the rewards hold at the beginning of each
episode. Together with (9) this gives

R◦
T,ε ≤

12|A| log |A|T 4

δ

ε
.
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This holds for all possible values of Mε, Ci, and τi, under the assumption
that the confidence intervals for the rewards according to Lemma 4 hold at the
beginning of each episode. Thus to complete the proof, we have to consider the
error probability with which these confidence intervals do not hold. The regret
for a failing confidence interval at ti is upper bounded by the length of the
episode’s cycle phase (the regret of the respective transition phase has already
been considered above). Due to the episode termination criterion, if an episode’s
cycle phase starts at step t◦i , the length of the cycle phase is at most t◦i , which
in turn can be bounded by ti + D. Hence, by Lemma 4 and the bound on the
number M of episodes of Proposition 3, the expected regret accumulated due
to failing confidence intervals is at most

M∑
i=1

(ti + D) · P{confidence interval fails at ti}

≤
M∑
i=1

T∑
t=1

(t + D) · P{ti = t and confidence interval fails at t}

≤
M∑
i=1

T∑
t=1

(t + D) · 2δ

t3
=

M∑
i=1

( T∑
t=1

2
t2

+ D

T∑
t=1

2
t3

)
δ <

M∑
i=1

(
10
3 + 5D

2

)
δ

≤ 20+15D
6 δ|A| log2

2T
|A| .

Summarizing we obtain

E(RT,ε) ≤
12 |A| log |A|T 4

δ

ε
+

(
D + 20+15D

6 δ
)
|A| log2

2T
|A| + |S||A|,

now also taking into account the regret caused in the exploration phase of the
transition structure according to Proposition 2.

In order to obtain a high probability bound on the regret from Theorem 6,
we also have to consider deviations from the average reward in each cycle, which
will be handled by Lemma 5.

Theorem 8. With probability 1− 9
2δ, the regret of UCycle (with input param-

eter δ) with respect to an ε-optimal policy after T steps can be upper bounded
as

RT,ε ≤
24 |A| log |A|T 4

δ

ε
+ D|A| log2

2T
|A| + |S||A|+

16λ|A| log |A|
δ

ε2
,

where λ is the largest simple cycle length and D the diameter of the transition
graph.

Proof. We basically repeat the proof of Theorem 7, but in order to achieve high
probability bounds on the regret with respect to an ε-optimal cycle, we consider
ε
2 -optimal cycles and reserve ε

2 for the deviation from the average reward. Thus,
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Lemma 5 shows that in a cycle phase of length θ the probability that the random
average reward is worse than the expected average reward minus ε

2 is upper
bounded by exp

(
− ε2θ

2

)
.

Now we book all episodes with cycle phases shorter than θ0 := 2 log(|A|/δ)
ε2

(which corresponds to error probability δ
|A| ) as having maximal possible regret.

Similarly to Proposition 3, the number of episodes with cycle phase of length
< θ0 in which the number of visits of a fixed action a is doubled can be upper
bounded by log2 2θ0. By the criterion for episode termination (first, visits in
an action are doubled, then the cycle is completed), we may upper bound the
total number of steps taken in the cycle phases of these short episodes (and
consequently also the respective regret) by

|A|
dlog2 2θ0e∑

i=0

λ · 2i ≤ 8λ|A|θ0 =
16λ|A| log |A|

δ

ε2
, (10)

where λ is the largest simple cycle length in the transition graph.
Concerning the episodes with longer cycle phases, consider for a fixed ac-

tion a all episodes with cycle phase of length ≥ θ0 in which the number of visits
in a is doubled. The history and hence the corresponding cycle phase lengths
θ1(a) < θ2(a) < . . . are random, however by the doubling criterion for episode
termination we certainly have θi(a) ≥ 2i−1θ0. Consequently, the probability
that the average reward of the i-th episode’s cycle phase is more than ε

2 below
expectation is at most exp

(
− ε22i−1θ0

2

)
. Thus, summing up over all actions a,

each episode is covered and the total error probability can be bounded by

|A|
dlog2

2T
|A|e∑

i=0

exp
(
− ε22iθ0

2

)
= |A|

dlog2
2T
|A|e∑

i=0

(
δ

|A|

)2i

< 2δ.

The rest of the proof is as for Theorem 7, only with ε replaced with ε
2 and

without the error term, so that one obtains including (10) the claimed regret
bound, which holds with probability 1− 5

2δ − 2δ = 1− 9
2δ.

Note that due to the different handling of the error probabilities in the proofs
of Theorems 7 and 8, Theorem 8 only makes sense for sufficiently small δ < 2

9 ,
while Theorem 7 remains sensible also for larger values of δ.

For sufficiently small ε, any ε-optimal policy will be optimal, which yields
the following corollary from Theorems 7 and 8.

Corollary 9. Let ∆ := ρ∗−maxπ:ρπ<ρ∗ ρπ be the difference between the average
reward of an optimal cycle and the average reward of the best suboptimal cycle.
Then for the regret of UCycle (with input parameter δ)

E(RT ) ≤
12|A| log |A|T 4

δ

∆
+

(
D + 20+15D

6 δ
)
|A| log2

2T
|A| + |S||A|, and

RT ≤
24|A| log |A|T 4

δ

∆
+ D|A| log2

2T
|A| + |S||A|+

16λ|A| log |A|
δ

∆2
,
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the latter with probability 1− 13
2 δ.

Proof. The bound on the expected regret is straightforward from Theorem 7.
For the high probability bound one also has to consider episodes whose cycle
is ∆-good without being optimal (which causes additional regret with respect
to an optimal policy). This may happen if the random reward the learner
obtains for a suboptimal cycle is higher than the expected reward. However, this
problem can be handled using a similar strategy as in the proof of Theorem 8.
We consider ∆

2 -optimal cycles and reserve ∆
2 for the confidence interval of the

random average reward of a suboptimal cycle. Note that this is different from
what we did in the proof of Theorem 8. There we had to deal with episodes in
which the performance in the cycle phase was below the average reward of the
played cycle, while here we have to consider episodes where the performance is
above the average reward.

Still, the argument is symmetric to the one given in the proof of Theorem 8.
We assume that episodes with cycle phase shorter than 2 log(|A|/δ)

∆2 have maximal
possible regret, while by Lemma 5 the random reward of all longer cycle phases
is larger than the expected reward by at most ∆

2 with a total error probability
< 2δ. Together with Theorem 8, this results in the claimed bound, which holds
with probability at least 1− 13

2 δ.

Remark 10. Although there are MDPs in which the distance ∆ is so large that
the second term in the regret bounds of Corollary 9 is the larger one, in general
∆ can be arbitrarily small, while the diameter D is always upper bounded by the
number of states. Thus, the first term can essentially be considered to be the
main term in our regret bounds.

4.2. Lower Bounds
There are two kinds of lower bounds on the expected regret in the multi-

armed bandit setting (cf. Section 5.1 below). First, there is a lower bound due
to Mannor and Tsitsiklis [17] of Ω

( |B| log T
∆

)
, where B is the set of given arms

and ∆ is the difference between the best and the second-best average reward of
an arm. For the case where the reward distribution is allowed to depend on the
horizon T , a lower bound of Ω(

√
|B|T ) has been derived by Auer et al. [18].

While for |S| = 1 one has an ordinary multi-armed bandit problem, for
|S| ≥ 2 it is easy to reproduce these bounds for the deterministic transition MDP
scenario with |B| being replaced with |A|, provided that there are |A| ≥ 2|S|
actions (i.e., edges in the transition graph). This is done simply by inflating
the respective multi-armed bandit problem as follows. The transition graph is
chosen to consist of a directed cycle of length |S| (containing each state in S)
with (one or more) loops added in each state (cf. Figure 3). The rewards in
the loops are chosen as for the arms in the multi-armed bandit problems that
give the lower bounds mentioned above. All other rewards (for the transitions to
different states in the cycle) are set to 0. Obviously, learning such a deterministic
transition MDP is at least as hard as learning the corresponding bandit, while
the regret is actually larger due to the 0-reward transitions. As the total number

14



�
�

�
�

�
�

�
�

�� ��

�
�
�
�
�
�
�
�

��

�
�
�
�

�
�

�
�

�
�

�
�

�
�
�
�

...

Figure 3: The transition graph for the lower bound deterministic transition MDP.

of edges |A| is |B| + |S| (where |B| corresponds to the number of arms in the
bandit setting), this gives the following lower bounds for deterministic transition
MDPs.

Theorem 11. For any algorithm and any natural numbers |S|, |A| with |A| >
|S| there is a deterministic transition MDP with |S| states and |A| actions, such
that the algorithm’s expected regret after T steps is

E(RT ) = Ω
(

(|A| − |S|) log T

∆

)
. (11)

If the MDP is allowed to depend on T , a lower bound of Ω(
√

(|A| − |S|) T )
holds.

Note that |A| − |S| ≥ |A|
2 when |A| ≥ 2|S|, so that in this case the lower

bound of (11) meets the main term of the upper bounds of Corollary 9.

Remark 12. The MDP in Figure 3 also indicates that a switching cost term of
Ω(D log T ) is necessary for each learner that wants to achieve logarithmic regret.
Indeed, partition the T steps into episodes of length T0, 2T0, 4T0, . . . , 2iT0. Then,
by the lower bound of Mannor and Tsitsiklis [17] for a suitable T0 the expected
number of choices of a suboptimal arm/loop has to be at least 1 in each episode.
On the other hand, the algorithm cannot afford to keep playing a suboptimal
choice, as the regret would not be logarithmic anymore. Therefore, one has at
least one switch per episode and since the number of episodes is Θ(log T ), this
shows that Ω(log T ) switches are necessary. As in the MDP of Figure 3 each
switch costs D (until one gets back to the optimal loop again), the switching
costs are Ω(D log T ). This does not quite match the term of D|A| log T in our
upper bounds, which we however conjecture to be necessary.

5. An Application: Bandits with Switching Cost

5.1. Setting
A special case of practical relevance is the setting of stochastic multi-armed

bandits with switching cost. In ordinary multi-armed bandit problems, a learner
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has to choose an arm from a (usually finite) set B. Choosing b ∈ B gives ran-
dom reward ∈ [0, 1] with mean r(b), where we make the same independence
assumptions as in the MDP setting. The learner tries to maximize her accumu-
lated rewards. This corresponds to a single state MDP (whose transitions are
trivially deterministic).

It is a natural constraint to assume that the learner may switch arms not
for free but has to pay a fixed cost of γ > 0 when switching from an arm b to
an arm b′ 6= b. This can be interpreted as a negative reward of −γ for switching
arms.

Bandit settings with switching cost have mainly been considered in the eco-
nomics literature (for an overview see Jun [19]). Even though most of this litera-
ture deals with the optimization problem when the whole setting is known, there
is also some work on the problem when the learner has no primary knowledge
of the payoffs of the individual arms. In the wake of the seminal paper of Lai
and Robbins [20], which dealt with the ordinary multi-armed bandit problem,
there was an adaptation of their approach to the setting with switching costs
by Agrawal et al. [21]. Their bounds later were improved by Brezzi and Lai
[22]. However, as the original (optimal) bounds of Lai and Robbins [20], the
bounds given by Agrawal et al. [21] and Brezzi and Lai [22] are asymptotic in
the number of steps. From our results for deterministic transition MDPs it is
easy to obtain logarithmic bounds that hold uniformly over time.

5.2. Bandits with Switching Cost as Deterministic MDPs
Translated into the deterministic transition MDP setting a multi-armed ban-

dit problem with arm set B and switching cost γ corresponds to a complete
digraph with |B| vertices, each with loop. These loops have mean rewards ac-
cording to the actions in B, while all other edges in the graph have deterministic
negative reward of −γ. Note that the situation in Example 1 is an MDP cor-
responding to a bandit problem with switching cost 0. Hence, switching arms
too often is also harmful in the simpler setting of bandits with switching cost.

In fact, the situation is a little bit different to the deterministic transition
MDP setting, as in the bandit setting it is assumed that the learner knows
the cost for switching. With this knowledge, it is obviously disadvantageous to
choose a cycle that is not a loop in some state. Hence, a sensible adaptation
of UCycle would choose the loop in the state that has the highest upper
confidence bound value. This corresponds to the UCB1 algorithm of Auer et al.
[2] with the only difference being that increasing episodes are used (which is
necessary to obtain sublinear regret as Example 1 shows). Indeed, Auer et al.
[2] have already proposed an algorithm called UCB2 that also works in episodes
and whose regret (including switching costs) is also logarithmic in T .

Although due to the negative switching costs, the rewards are not in [0, 1],
it is easy to adapt the bounds we have derived in the deterministic transition
MDP setting. Indeed, we have D = 1, while, as switching costs γ, the transition
term in the bounds has to be multiplied by γ. This yields the following bounds.
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Corollary 13. The regret of the adapted UCycle algorithm (with input pa-
rameter δ) in the multi-armed bandit setting with |B| arms and switching cost γ
is upper bounded as

E(RT ) ≤
12|B| log |B|T 4

δ

∆
+

(
γ + 6δ

)
|B| log2

2T
|B| , and

RT ≤
24|B| log |B|T 4

δ

∆
+ γ|B| log2

2T
|B| +

16|B| log |B|
δ

∆
,

the latter with probability 1− 13
2 δ.

Indeed, in the bandit setting a more refined analysis is possible, so that one
easily achieves bounds of the form

∑
b∈B:r(b)<r∗

const · log T
δ

r∗ − r(b)
+ γ|B| log2

2T
|B| , where r∗ := maxb∈B r(b),

as given by Auer et al. [2] (apart from the switching cost term, cf. Remark 12)
by adapting the proof of Theorem 1 of Auer et al. [2] to the episode setting.
This gives slightly worse constants in the main term than in the bound given by
Auer et al. [2], since a suboptimal arm will be played till the end of an episode.
As all this is straightforward, we neither bother to give the precise bounds nor
further details concerning the proof.

Of course, the deterministic transition MDP setting also allows to deal with
settings with individual switching costs or where switching between certain arms
is not allowed. In these more general settings one trivially obtains corresponding
bounds with γ replaced by the cost of the most expensive switch between any
two arms. This switch need not be performed in a single step, as it may be
cheaper to switch from b to b′ via a sequence of other arms. Note however, that
when not switching directly, the learner not only has to pay switching costs but
also loses time and reward by choosing the probably suboptimal intermediate
arms. There is a similar problem in the original UCycle algorithm, as taking
the shortest path to the assumed best cycle may not be optimal. Generally,
in order to solve this problem one has to consider bias- or Blackwell-optimal
policies [8]. However, as this has no influence on the regret bounds, we do not
consider this further.

Finally, we would like to remark that the episode strategy also works well
in more general bandit settings, such as continuous bandits with Lipschitz con-
dition. Such settings were considered e.g. by Kleinberg [23] or Auer et al. [24],
and it is easy to modify e.g. the proposed algorithm CAB of Kleinberg [23] to
achieve bounds when switching costs are present. As in the settings mentioned
above, the main term of the bounds remains basically the same with slightly
worse constants. We note that these bounds are not logarithmic anymore and
neither is the switching cost term.
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6. Conclusion

We have shown that unlike in the general MDP case, in regret bounds for
MDPs with deterministic transitions the transition parameter only appears in
the term incurred by switching policies. Our bounds are close to optimal, and
the only open question in that respect is whether the factor |A| in the switching
term is necessary.

As in the deterministic transition MDP setting the transition structure is
more or less given, a related open question is whether our results can be gener-
alized to general MDPs with known transition probabilities. A similar scenario
has already been considered by Even-Dar et al. [25]. However, Even-Dar et al.
[25] consider rewards that are allowed to change over time, which makes learn-
ing more difficult, so that the achieved O(

√
T ) bound (including a transition

parameter) is best possible.
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A. An Inequality and its Proof

Lemma 14. Let Mε be the set of all indices i of ε-bad episodes where UCycle
chooses a cycle C̃i with expected reward < ρ∗ − ε. Further, let τi(a) denote the
number of times edge a is visited in the cycle phase of episode i, and let nti(a)
be the number of times a was chosen before episode i. Finally, set nε(a) :=∑

i∈Mε
τi(a) to be the total number of visits in a in cycle phases of episodes in

Mε. Then ∑
i∈Mε

τi(a)√
nti(a)

≤
(
1 +

√
2
)√

nε(a).

Although our algorithm and its termination criterion differ slightly from the
UCRL2 algorithm of Auer et al. [6], the proof of Lemma 14 is basically the
same as for an analogous result given in Appendices A.3 and B.1 of Auer et al.
[26]. We reproduce the proof here for the sake of completeness, starting with
the following preliminary lemma.
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Lemma 15. For any sequence of numbers z1, . . . , zn with 1 ≤ zk ≤ Zk−1 :=∑k−1
i=1 zi for k ≥ 1 and Z0 ≥ 1,

n∑
k=1

zk√
Zk−1

≤
(
1 +

√
2
)√

Zn .

Proof. We give a proof by induction over n. For n = 1 we have Z1 = z1 ≤ Z0,
so that

z1√
Z0

=
Z1√
Z0

≤
√

Z1 <
(
1 +

√
2
)
Z1.

For the induction step, we have by the induction hypothesis and as zn ≤ Zn−1,

n∑
k=1

zk√
Zk−1

≤
(
1 +

√
2
)√

Zn−1 +
zn√
Zn−1

=

√(
1 +

√
2
)2

Zn−1 + 2
(
1 +

√
2
)
zn +

z2
n

Zn−1

≤
√(

1 +
√

2
)2

Zn−1 +
(
2 + 2

√
2 + 1

)
zn

=
√(

1 +
√

2
)2

Zn−1 +
(
1 +

√
2
)2

zn =
(
1 +

√
2
)√

Zn−1 + zn

=
(
1 +

√
2
)√

Zn .

Proof of Lemma 14. For the sake of readability, in the following we skip refer-
ences to the action a from the notation and abbreviate √nti with di. Let jε

be the episode that contains step nε. Note that by definition of nε the number
of steps up to (and including) step nε that are in episodes /∈ Mε equals the
number of steps after nε that are in episodes ∈Mε. Consequently,∑

i<jε

τi1i/∈Mε
+

(
nε −

∑
i<jε

τi

)
1jε /∈Mε

=
( ∑

i≤jε

τi − nε

)
1jε∈Mε +

∑
i>jε

τi1i∈Mε .

Now, since djε ≤ di for i ≥ jε and di ≤ djε for i ≤ jε this observation gives∑
i∈Mε

τi

di
≤

∑
i<jε

τi

di
1i∈Mε

+
τjε

djε

1jε∈Mε
+

1
djε

∑
i>jε

τi1i∈Mε

≤
∑
i<jε

τi

di
1i∈Mε

+
1

djε

∑
i<jε

τi1i/∈Mε
+

1
djε

(
nε −

∑
i<jε

τi

)
≤

∑
i<jε

τi

di
+

1
djε

(
nε −

∑
i<jε

τi

)
.
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Since di = √
nti ≥

√∑i−1
k=1 τk we may apply Lemma 15 to obtain the claimed

∑
i∈Mε

τi

di
≤

∑
i<jε

τi√∑i−1
k=1 τk

+
nε −

∑
i<jε

τi√∑jε−1
k=1 τk

≤
(
1 +

√
2
)√

nε.
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