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Abstract. We consider general reinforcement learning under the average reward cri-

terion in Markov decision processes (MDPs), when the learner’s goal is not to learn

an optimal policy, but accepts any policy whose average reward is above a given sat-

isfaction level σ. We show that with this more modest objective, it is possible to give

algorithms that only have constant regret with respect to the level σ, provided that

there is a policy above this level. This result generalizes findings of [7, 19] from the

bandit setting to MDPs.

Further, we present a more general algorithm that achieves the best of both worlds:

If the optimal policy has average reward above σ, this algorithm has bounded regret

with respect to σ. On the other hand, if all policies are below σ, then the expected

regret with respect to the optimal policy is bounded as for the UCRL2 algorithm [15].

Key words: reinforcement learning, Markov decision process, regret

MSC2000 subject classification: Primary: 68Q32; secondary: 68T05, 90C40

OR/MS subject classification: Primary: Computer science: Artificial intelligence;

secondary: Analysis of algorithms: Suboptimal algorithms; Probability: Markov

processes

History:

1. Introduction Work in reinforcement learning (RL) typically follows the optimization

paradigm. That is, the problem setting is designed as a Markov decision process (MDP), and the

goal of the learner is to acquire an optimal policy in this underlying MDP. Historically, this can

be explained easily, as the MDP setting is well investigated, so that reinforcement learning was

able to resort to the rich theory on MDPs developed by the operations research community. On
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the other hand, when taking a closer look, many reinforcement learning problems are about learn-

ing to perform a special task for which there are in general plenty of good ways and no best way

actually stands out. Typical things humans do in their everyday life are of that kind, e.g., go to

work, wash the dishes, mow the lawn, shop a list of items, etc. Even for tasks where algorithms

already do quite well, such as game playing or autonomous driving, one rather compares to the

level humans reach and is usually happy with respective suboptimal performance. Thus playing a

game like chess better than most humans is considered to be sufficient, just as driving a car as good

as a human. In many of these tasks it even is difficult to make up an optimality criterion, or it is

not feasible computing a respective optimal policy. Accordingly, the concept of satisficing, where

one seeks a solution that is just good enough, makes a lot of sense in the context of reinforcement

learning.

In this paper we want to investigate the question, whether there is an advantage in pursuing this

more modest goal of satisficing when doing reinforcement learning in an MDP under the average

reward criterion. Instead of aiming at optimal average reward, the learner is content with average

reward above a specified satisfaction level σ. As performance criterion we consider online regret

with respect to this level σ. That is, as long as the agent follows a policy π whose average reward ρπ

is above σ there is no regret, otherwise the per-step regret is σ− ρπ.

In the following, we briefly discuss related work, define the setting, and recall some preliminar-

ies in Section 2. Then in Section 3 we present our algorithm for the case when the optimal average

reward ρ∗ of the underlying MDP (which we assume to be communicating) is above σ. In Section 4

this algorithm is shown to learn with only constant regret (i.e., independent of the number of steps)

with respect to the desired level σ. This result hightlights the alleviation when considering satisfic-

ing instead of optimization, as classic regret bounds for reinforcement learning usually grow with

the number of considered time steps (cf. e.g. [15]). Moreover, if only the optimal policy is above σ,

this entails even constant regret with respect to ρ∗, which generalizes a result of [7] from the bandit

to the general MDP setting. Section 5 presents an alternative algorithm as well as a bound on the

approximation error for estimating the diameter –a key quanitity– of an MDP.

In Section 6, we proceed to the general case, when ρ∗ may be below σ. Here we provide an

algorithm that on the one hand also only suffers constant regret when ρ∗ > σ. On the other hand,

when ρ∗ ≤ σ, the same algorithm can be shown to enjoy bounds on the classic regret (i.e., with

respect to ρ∗) just like the well-known UCRL2 algorithm [15].
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1.1. Related Work While satisficing objectives have been considered before, most respec-

tive investigations have been made in the much simpler bandit setting [1, 24, 19]. Here [19] is

closest to our approach and shows constant regret with respect to the satisfaction level σ if the

latter is reachable. Otherwise, combining the suggested algorithm with UCB one can achieve log-

arithmic bounds on the classic pseudo-regret similar as those known for UCB [5]. A more general

notion of regret which also considers the learner’s degree of belief in a Bayesian setting is consid-

ered in [24], which beside various upper bounds also provides lower bounds, cf. also the respective

discussion in [19].

While [19, 24] employ a notion of pseudo-regret with respect to σ, [1] suggests to consider the

actual rewards and introduces a second-level reward of 1, if the actual reward is above a sufficiency

level, which need not be constant. The given regret bounds are logarithmic in the horizon and

depend on the reward distributions of the single arms. For more discussion of related work in

the setting of multi-armed bandits (such as conservative and thresholding bandits) we refer to the

detailed related work section of [19].

For the general MDP setting there is little work on satisficing. A satisficing variant of Q-learning

is presented in [14], for which however only some experimental evaluation is given. The problem

of finding a satisficing policy in robust MDPs is considered in [25], which provides an alternative

to the usual worst-case analysis in this setting.

A notion of satisficing regret is introduced in [4] for an episodic and Bayesian RL setting. As

one may not have access to enough information needed to determine an optimal policy, the goal is

to consider an MDP approximation that allows to compute a satisficing policy. Satisficing in this

context is not defined with respect to a fixed level as in our case but with respect to the currently

available information. This is formalized using rate distortion theory, and the satisficing regret

basically corresponds to the respective approximation error. The paper proposes a generalization

of the PSRL algorithm [28] and gives bounds on the classic (Bayesian) regret that generalize

respective results for bandits [26, 2, 3] and in a special case correspond to those available for

PSRL [21].

More relevant to our setting is work on constrained MDPs (CMDPs). Typically, the goal in this

setting is to optimize some reward function as in standard MDPs, but on the other hand satisfy

some cost constraint for an additional cost function. Concerning the latter one can consider the

respective regret with respect to constraint violations, which basically corresponds to our regret

with respect to a satisfaction level σ.
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Most work on RL in CMDPs considers the discounted [11] or the episodic setting [23, 16,

18, 10]. However, there is some relevant work considering the average reward setting as we do.

Usually, some strong assumptions are made, such as that the transition probabilities are known

to the learner [31], when it is easy to guarantee that constraints are met. Ergodic CMDPs are

considered in [27], however the regret from constraint violations after T steps is of order T 2/3 and

thus quite large.

The state of the art is [8], whose algorithm on ergodic MDPs has regret (with respect to the

optimal average reward) of order
√
T and a constant violation of the cost constraint. For weakly

communicating MDPs, bounds of order T 2/3 are shown for regret as well as cost constraint vio-

lation. Both bounds are high probability bounds, but the considered reward and cost functions are

assumed to be deterministic.

Our setting can be considered to only take into account the cost constraint in a CMDP. That

is, the optimization of the rewards is trivial (e.g., assuming that all rewards are known to be 0).

The respective regret bounds we give are in expectation, however unlike in [8] our costs are ran-

dom, when no constant high probability bounds on the regret are possible (cf. the discussion in

Section 1.2.1 below). The constant constraint violation regret of [8] corresponds to our Theorem 2

below, however we achieve it not only for ergodic but more generally for communicating MDPs.

1.2. Setting and Notation Let M = (S,A, r, p) be an MDP with finite state space S, finite

action space A, mean rewards r(s, a) for (s, a) ∈ S ×A, and transition probabilities p(s′|s, a) for

(s′, s, a)∈ S×S×A. The random rewards are assumed to be bounded, i.e., contained in [0,1]. We

set S = |S| and A= |A|. Beside S and A, the diameter D(M) as introduced in [15] is an important

parameter of the MDP.

DEFINITION 1. Consider the stochastic process defined by a stationary policy π : S →A oper-

ating on an MDP M with initial state s. Let T (s′|M,π, s) be the random variable for the first time

step in which state s′ is reached in this process. Then the diameter of M is defined as

D(M) := max
s ̸=s′∈S

min
π:S→A

E(T (s′|M,π, s)).

In the following we assume that the diameter D(M) is finite, that is, the underlying MDP M

is communicating. This guarantees that a learner operating in M always is able to recover from a

mistake, as any state is reachable from another state. Indeed, let us define the average reward of a

stationary policy π : S →A starting in initial state s1 to be ρπ(M,s1) := limT→∞
1
T

∑T
t=1E(r

π,s1
t ),
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where rπ,s1t is the random reward obtained by the policy π at step t when starting in s1. Then the

optimal average reward ρ∗ in M is independent of the initial state when D(M) is finite. More-

over, considering nonstationary policies does not increase the optimal average reward [22]. In the

following, π∗ denotes a respective optimal policy in M such that ρπ∗(M,s1) = ρ∗ for any initial

state s1. Further, for any policy π whose average reward is independent of the initial state s1, we

write ρπ for ρπ(M,s1).

Beside the standard diameter we also consider a related transition parameter.

DEFINITION 2. For any stationary policy π we set

Dπ(M) := max
s ̸=s′∈S:

E(T (s′|M,π,s))<∞

E(T (s′|M,π, s))

to be the maximal finite distance between any two connected states under π. Then the worst-case

diameter is defined as

DW (M) :=max
π

Dπ(M).

In the following, we often drop the notation for the MDP and write e.g. D instead of D(M)

whenever M is understood from the context.

1.2.1. Regret and σ-regret We are interested in policies whose average reward is above a

given satisfaction level σ. Accordingly, for a policy π and an initial state s1 we define the gap to σ

as ∆σ
π,s1

:= max{0, σ− ρπ(M,s1)}. If the average reward for ρ is independent of the initial state,

we drop the latter in the notation and simply write ∆σ
π. Intuitively, ∆σ

π is the average per-step regret

with respect to σ an agent suffers when playing policy π. Accordingly, we define the σ-regret of a

policy π starting in state s1 after T steps as

Rσ,T
π,s1

:= T∆σ
π,s1

.

We note that the respective expected accumulated reward may deviate from Tρπ(M,s1) at most by

a term of order Dπ(M), cf. [15].

More generally we are interested in the σ-regret of episodic algorithms A, which stick to the

same stationary policy for a certain number of steps, before changing to another stationary policy.

That is, if algorithm A plays policy πk in episode k starting in state sk at step Tk (with k= 1,2, . . .),

the respective σ-regret after n episodes is defined as

R
σ,Tn+1

A,s1
:=

n∑
k=1

(Tk+1−Tk)∆
σ
πk,sk

.
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The σ-regret generalizes similar notions such as satisficing regret from the bandit to the MDP

setting, see e.g. [19]. We will also consider the classic regret with respect to ρ∗ after any T steps,

defined as in [15] as

RT
A,s1

:= Tρ∗−
T∑
t=1

rA,s1t , (1)

where similar as before, rA,s1t denotes the random reward obtained by algorithm A at step t when

starting in state s1.

In the end we will be interested in bounds on the expected regret. We note that when operating on

MDPs with random rewards it is not possible to obtain constant regret, as the sum of T accumulated

rewards in general will deviate from the mean by a term of order
√
T (see e.g. Theorem 13.1

of [17], which specifies this for the bandit setting).

Beside the gaps ∆σ
π,s1

we also consider the quantities ∆σ,− := min
π:∆σ

π>0
∆σ

π and ∆σ,+ := max
π:∆σ

π>0
∆σ

π,

where both max and min range over policies with average reward independent of the initial state.1

Further, we define the gaps ∆σ
∗ := ρ∗ − σ between the optimal average reward and σ, and ∆g :=

ρ∗ − max
π:ρπ<ρ∗

ρπ between the optimal average reward and the average reward of the best suboptimal

policy. As before, in the definition of ∆g it is sufficient to consider policies π with state independent

average reward ρπ.

2. Preliminaries Our proposed approach is based on the two RL algorithms UCRL2 and

GOSPRL, that we will employ in a blackbox manner. Accordingly, in the following we briefly

recall some basic properties that we will need for our purposes.

2.1. UCRL2 UCRL2 [15] is a well-known RL algorithm, which is based on the idea of

employing optimism in the face of uncertainty. UCRL2 proceeds in episodes in which a fixed

stationary policy is executed. Based on the episode termination criterion used by UCRL2, the fol-

lowing bound on the number of episodes holds.

PROPOSITION 1 (Jaksch et al. [15]). The number of episodes of UCRL2 up to step T ≥AS

is upper bounded by

AS log2
(
8T
AS

)
.

1 Note that for any policy π and any initial state s1, there is a policy π′, such that the average reward of π′ is independent of the
initial state and ρπ′ = ρπ(M,s1): Since M is assumed to be communicating, for states s not in the same irreducible class Iπ(s1)
as s1, one can choose actions for π′(s) that eventually lead to Iπ(s1), so that there is only a single irreducible class under π′. (For
a definition of irreducible class see footnote 3 below.)
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More importantly, for UCRL2 one can give bounds on the classic online regret as defined in (1).

We will use the following two bounds, a high probability bound as well as a gap-dependent bound

on the expected regret.

THEOREM 1 (Jaksch et al. [15]). With probability at least 1 − δ, for all T the regret of

UCRL2 run with confidence parameter δ is bounded by

34 ·DS
√
AT log

(
T
δ

)
.

Moreover, the expected regret of UCRL2 run with confidence parameter δ = 1
3T

is bounded by

E[RT
UCRL2,s1

] ≤ 342AS2D2 log(T )

∆g

+
∑
a,s

[
1+ log2( max

π:π(s)=a
Tπ)

]
max

π:π(s)=a
Tπ,

where Tπ is the smallest natural number such that for all T ≥ Tπ the expected average reward after

T steps is ∆g

2
-close to the average reward of π.

2.2. GOSPRL Unlike UCRL2, GOSPRL [29] is an exploration algorithm, whose goal is to

collect a specified number of samples in an unknown communicating MDP. That is, for a given

function b̄ : S ×A→ N and a confidence parameter δg, GOSPRL(b̄, δg) for any action a ∈ A and

any state s ∈ S collects at least b̄(s, a) samples with overall success probability at least 1− δg. As

shown in [29], this is accomplished after Õ(B̄D+AS2D
3
2 ) steps, where B̄ =

∑
(s,a)∈S×A b̄(s, a)

and the Õ notation hides logarithmic dependencies on S,A,D, B̄, and 1
δg

.

Furthermore, [29] provides another algorithm (based on GOSPRL), which computes an approx-

imation of the diameter of the underlying MDP. This algorithm, which we call GOSPRL-Diam

in the following, takes a confidence parameter δg and a precision parameter εg as input, and after

Õ(AS2D3

ε2g
) steps with probability at least 1− δg outputs an estimate D̄ of the diameter, for which it

holds that D≤ D̄≤ (1+ 2εg(1+ εg))(1+ εg)D.

3. Algorithm SAT-RL In this section, we introduce our algorithm SAT-RL (shown as Algo-

rithm 1) which is designed to find and keep playing a satisficing policy when given a satisfaction

level σ, provided that ρ∗ >σ.

SAT-RL starts by collecting some initial samples for each state-action pair using GOSPRL. That

is, first at least S + 1 samples for each state-action pair are collected (lines 5–8). Here we use

N(s, a) to denote the current number of samples of a state-action pair (s, a). If the diameter of

the estimated MDP is infinite, in addition GOSPRL-Diam is run to estimate the MDP’s diameter
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Algorithm 1 SAT-RL for satisficing in RL
1: Input: state space S, action space A, satisfaction level σ

2: Initialization:

3: Set confidence level δg := 1
2
, accuracy level εg := 1

2
, and initial sampling number b := S+1.

4: Define function b̄ : S ×A→N to be b̄(s, a) = b for any (s, a).

5: while an action a∈A at some state s∈ S has not been chosen b̄(s, a) times do

6: Run GOSPRL(b̄, δg).

7: For any (s, a)∈ S ×A, set b̄(s, a) :=max{0, b−N(s, a)}.

8: end while

9: while the diameter of the estimated MDP M0 is infinite do

10: Run GOSPRL-Diam(δg, εg) to estimate the diameter of M .

11: end while

12: for episodes k= 1,2, . . . do

13: Compute an optimal policy πk on Mk that induces a unique irreducible class Iπk
.

14: if ρπk
(Mk, sk)≥ σ then perform exploitation episode:

15: Play πk until all states in Iπk
have been visited at least once.

16: else perform exploration episode:

17: Set b := b+S.

18: while N(s, a)< b for some state-action pair (s, a) do

19: For any (s, a), set b̄(s, a) :=max{0, b−N(s, a)}.

20: Run GOSPRL(b̄, δg).

21: end while

22: end if

23: end for

(lines 9–11). This is only done to guarantee that the diameter of the empirical MDP M0 is finite,

that is, M0 is communicating.

After this initialization phase, the algorithm proceeds in episodes k, in which at first the optimal

policy πk in the estimated MDP Mk is computed (line 13). As the diameter of Mk is finite at this
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step, this optimal policy can be computed by value iteration2 and can be assumed to have a unique

irreducible class3 Iπk
.

If the average reward of πk on Mk is at least σ, SAT-RL plays the policy πk in an exploitation

episode, which ends after all states reachable under πk have been visited (line 15). Otherwise, if

the average reward of πk on Mk is below σ, SAT-RL performs an exploration episode, in which

GOSPRL is used to collect another S samples from each state-action pair (lines 17–21).

Concerning computational complexity, the most elaborate step of SAT-RL is the (repeated) cal-

culation of the optimal policy of the empirical MDP (line 13). Similarly, GOSPRL has to repeat-

edly solve a stochastic shortest path problem, which is a special instance of finding an optimal

policy in an MDP. This problem can be solved in polynomial time e.g. by LP algorithms (cf. Sec-

tion 38.3.1 of [17]). The suggested value iteration usually works well in practice, however does not

have polynomial time guarantees, cf. [12, 6] for respective results in the discounted case.

Before we proceed to analyze SAT-RL, we note that in Appendix C we present an alternative

algorithm called SAT-RL2. Instead of running GOSPRL-Diam to estimate the diameter, SAT-RL2

uses a result about the diameter of MDP approximations (Theorem 3), which might be of interest

in itself. Further details can be found in Section 5 below.

4. Regret Bound for SAT-RL In this section we provide a proof of the following bound on

the σ-regret of SAT-RL. For the sake of readability, some technical details have been deferred to

Appendix B.

THEOREM 2. If ρ∗ > σ, then the expected σ-regret of SAT-RL after any number of steps is

bounded by

Õ

(
AS2D

7
2

(∆σ
∗ )

2
+

(∆σ
∗ )

2S−2A2

DS− 5
2SS−3

+
∆σ,+AS2D3

W

(∆σ,−)2

)
,

where the Õ-notation hides logarithmic dependencies on A,S,DW ,∆σ,−, and ∆σ
∗ .

The second term in the bound of Theorem 2 is small and hence negligible, unless A is very large

compared to the other terms. The appearance of ∆σ
∗ and ∆σ,− in the denominator of the first and

the third term is similar as in the upper bounds derived in [19] for satisficing in the bandit setting.

2 Using value iteration (VI) introduces an approximation error ε, which however can easily be controlled: The error ε of the current
VI iteration is bounded by the span of the difference of two successive value vectors. In practice, it would even be sufficient to stop
VI as soon as it can be guaranteed that the current policy π satisfies ρπ − ε > σ.
3 We recall that the irreducible classes of a Markov chain are the equivalence classes with respect to the relation of being commu-
nicating, where two states are communicating if one can reached from the other with positive probability after a finite number of
t≥ 0 steps.
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Indeed, writing ρi for the mean reward of arm i and ∆σ
i := |σ−ρi| for the gap to σ, [19] provides a

simple lower bound of order
∑

i:ρi<σ 1/∆
σ
i on the σ-regret for bandits. It is straightforward to adapt

the respective example (originally suggested in [7]) to the MDP setting to obtain a preliminary

lower bound of order AS/∆σ,− for the σ-regret in MDPs, cf. Proposition 2 below. Considering

the available lower bounds for reinforcement learning [15] it also seems intuitive that the diameter

has to appear. A construction similar to the one used for the proof of Theorem 5 in [15] looks

promising to get an additional factor of D in the lower bound of Proposition 2. On the other hand,

we think that the factor of ∆σ,+/∆σ,− in the third term of Theorem 2 is an artifact of the analysis.

Similarly, it seems plausible that the parameter DW should have a smaller exponent and in general

should be replaced by the smaller diameter D.

Concerning the first term in Theorem 2, it is an open question whether the dependence on ∆σ
∗

is necessary. While it is plausible that the problem becomes harder when the optimal arm/policy

is close to σ, a respective lower bound is also still missing in the bandit setting. The quadratic

dependence as in Theorem 2 seems to be another artifact of our proof. The upper bounds of [19]

only have a dependence of order 1/∆σ
∗ .

PROPOSITION 2. For all natural numbers S ≥ 1, A> 1 and each RL algorithm A there is a

communicating MDP with S states and A actions in which A suffers expected σ-regret of order

AS/∆σ,−.

Proof. Consider a bandit problem with S(A − 1) arms where each suboptimal arm has dis-

tance ∆ to the satisfaction level σ and the unique optimal arm is the only sufficient arm with

average reward above σ. Generalizing Theorem 5 of [7] to more than two arms, the expected regret

of any bandit algorithm can be shown to be at least of order AS/∆ for this problem. It remains

to construct an MDP with S states and A actions that corresponds to this bandit setting. This can

be easily accomplished by distributing the S(A− 1) arms uniformly over S states. Then in each

state there are A−1 arms available, which corresponds to an MDP with S states and A−1 actions

(with the average rewards defined as in the original bandit setting).

If the learner at each step were allowed to pick a state and an action directly this obviously

corresponds to the original bandit problem. In order to obtain a communicating MDP we have to

define suitable transition probabilities. First, for each action a we set p(s|s, a) = 1 for all states s

and accordingly p(s′|s, a) = 0 for s ̸= s′. In order to connect the states we arrange them in a cycle

s1, s2, . . . , sS where we add in each state si a special action that gives 0 reward and deterministically
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leads to state si+1 (1≤ i≤ S with sS+1 := s1). The arising MDP has S states and A actions, and

∆σ,− =∆. Due to the necessary transitions between states learning in the MDP is harder than in

the original bandit problem, so that the regret is again at least of order AS/∆σ,−. □

Before we finally give a proof, we note that Theorem 2 immediately implies the following gen-

eralization of a result of [7] from the bandit to the general MDP setting.

COROLLARY 1. When the learner is given a reference value σ with ρ∗ >σ > ρ∗−∆g, then the

expected regret (with respect to ρ∗) of SAT-RL with satisfaction level σ is bounded by a constant.

Proof. As the chosen satisfaction level σ is able to distinguish any suboptimal policy from

an optimal one, reaching the level σ is equivalent to playing an optimal policy. Accordingly, an

episode of SAT-RL will only contribute to the regret (with respect to ρ∗) if it also has nonzero

σ-regret. Therefore, the expected regret of SAT-RL is bounded by a constant. □

4.1. Proof of Theorem 2 Let us first introduce some notation. For any episode k and any

state-action pair (s, a), we write rk(s, a), pk(·|s, a), and Nk(s, a) for the empirical average reward,

the empirical transition probability distribution, and the number of times action a has been chosen

in state s before the start of episode k. Similarly, Mk denotes the estimated MDP and sk is the initial

state at start of episode k. Further, we set ρk(πk, sk) := ρπk
(Mk, sk) and ρ(πk, sk) := ρπk

(M,sk).

Let Lk be a random variable for the number of steps in episode k (for k > 0) and in the initial-

ization phase (for k= 0), respectively. Then the expected σ-regret after n episodes can be bounded

by

E[L0] +
n∑

k=1

E
[
1{ρk(πk, sk)≥ σ ∧ ρ(πk, sk)<σ}Lk∆

σ
πk

]
+

n∑
k=1

E
[
1{ρk(πk, sk)<σ}Lk

]
. (2)

We call the three terms in this sum initialization regret RInit, exploitation regret RExploit, and explo-

ration regret RExplore, respectively. In the following, we derive bounds for each term separately.

Note that in the initialization phase as well as in exploration episodes we perform GOSPRL,

which in general does not execute a stationary policy. Accordingly, the regret of these episodes

is actually not well defined. In order to repair this, we simply consider a regret of 1 per step in

these episodes k, and accordingly simply bound the (expected) number of steps Lk. This is already

reflected in (2).
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In the following, we define the frequency freqk of episode k to be the number of visits in the

state-action pair (s, a) that has the fewest visits before episode k among the state action-pairs that

will be regularly visited during episode k. That is, for exploration episodes k we set

freqk :=min
s,a

Nk(s, a),

while for exploitation episodes k in which policy πk is played we set

freqk := min
s∈Iπk

Nk(s, πk(s)).

Intuitively, the higher the frequency the more samples have been gathered for state-action pairs

occurring in the current episode. Accordingly, a higher frequency implies higher precision of the

empirical model used.

Upper Bound on Exploitation Regret By Theorem 4.8 of [9], the cover time (i.e., the

first time at which all states have been visited) of an irreducible Markov chain with S states and

diameter at most D is less than D(1+ log(S)). Consequently, following a fixed policy πk, we need

in average at most Dπk
steps to reach the irreducible part Iπk

and at most Dπk
(1+ log(S)) steps to

cover it.

Further, ∆σ
πk

can be upper bounded by ∆σ,+, so that

E
[
Lk∆

σ
πk

∣∣ρk(π, sk)≥ σ ∧ ρ(π, sk)<σ
]
≤ DW (2+ log(S))∆σ,+. (3)

It remains to analyze the term

n∑
k=1

P
(
ρk(πk, sk)≥ σ ∧ ρ(πk, sk)<σ

)
=

n∑
k=1

P
(
ρk(πk, sk)≥ σ ∧ ρ(πk, sk)<σ ∧ freqk ≤ θ

)
(4)

+
n∑

k=1

P
(
ρk(πk, sk)≥ σ ∧ ρ(πk, sk)<σ ∧ freqk ≥ θ+1

)
, (5)

where we choose

θ=

⌈
4S(DW +1)2

(∆σ,−)2
log

(
8S(DW+1)2

(∆σ,−)2

)⌉
. (6)
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Intuitively, θ is the number of samples needed for each state-action pair so that the policy πk

is satisficing with high probability, cf. Appendix B.1 for details. More precisely, Lemma 8 in

Appendix B.1 shows that we can bound (5) as

n∑
k=1

P
(
ρk(πk, sk)≥ σ ∧ ρ(πk, sk)<σ ∧ freqk ≥ θ+1

)
≤ 2A

θS−1 log(2θ)
. (7)

Concerning (4), first note that after the initialization phase freqk ≥ S + 1 for all episodes k.

Further, Lemma 4 in Appendix A.3 shows that for any natural number f with S+1≤ f ≤ θ, there

are at most AS episodes k for which freqk = f . As there are precisely θ− S such numbers f , we

can bound (4) as

n∑
k=1

P
(
ρk(πk, sk)≥ σ ∧ ρ(πk, sk)<σ ∧ freqk ≤ θ

)
≤AS(θ−S) ≤ Õ

(
AS2D2

W

(∆σ,−)2

)
. (8)

Taking together eqs. (3) – (7) we obtain

RExploit ≤ Õ

(
∆σ,+AS2D3

W

(∆σ,−)2

)
. (9)

Upper Bound on Initialization Regret The sample complexity of GOSPRL(b̄, δg) is

Õ(B̄D+AS2D
3
2 ), where B̄ =

∑
s,a b̄(s, a) and the Õ-notation hides logarithmic dependencies on

S,A, and 1
δg

. In our case B̄ =AS(S +1) and δg =
1
2
. As GOSPRL is run until each state has been

visited at least S+1 times, the expected regret of the first part of the initialization phase (lines 5–8

of the algorithm) is at most

∞∑
i=1

(1
2
)i−1Õ(B̄D+AS2D

3
2 ) = Õ(AS2D+AS2D

3
2 ) = Õ(AS2D

3
2 ).

For estimating the diameter (lines 9–11), the sample complexity of GOSPRL-Diam(δg, εg) is

Õ
(
AS2D3

ε2g

)
. Similar as before, since δg = εg =

1
2
, the respective regret is at most

∞∑
i=1

(1
2
)i−1 Õ

(
AS2D3

ε2g

)
= Õ(AS2D3),

so that we can bound the total regret in the initialization phase as

RInit ≤ Õ(AS2D
3
2 )+ Õ(AS2D3) = Õ(AS2D3). (10)
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Upper Bound on Exploration Regret Analogously to the analysis of RExploit, we first

bound

E
[
Lk

∣∣ρk(πk, sk)≤ σ
]
= Õ(AS2D

3
2 ) (11)

according to the sample complexity of GOSPRL (cf. also the analysis of RInit). It remains to bound

n∑
k=1

P
(
ρk(πk, sk)<σ

)
=

n∑
k=1

P
(
ρk(πk, sk)<σ)∧ freqk ≤ θ∗

)
+

n∑
k=1

P
(
ρk(πk, sk)<σ ∧ freqk ≥ θ∗+1

)
, (12)

where we set

θ∗ =

⌈
4S(D+1)2

(∆σ
∗ )

2
log

(
8S(D+1)2

(∆σ
∗ )

2

)⌉
. (13)

Similar to the definition of θ in (6), θ∗ is the number of samples needed to identify the optimal

policy in the underlying MDP as satisficing in the empirical MDP Mk, cf. Appendix B.2 for details.

In particular, Lemma 11 in Appendix B.2 shows that (12) is bounded as

n∑
k=1

P
(
ρk(πk, sk)<σ ∧ freqk ≥ θ∗+1

)
≤ 2A

θS−1
∗ log(2θ∗)

. (14)

Further, by definition of the algorithm, in any exploration episode each state-action pair is visited

at least S times, so that also freq will increase by S. Accordingly,

n∑
k=1

P
(
ρk(πk, sk)<σ ∧ freqk ≤ θ∗

)
≤
⌈
θ∗
S

⌉
. (15)

Consequently, summarizing (11) – (15) we obtain

RExplore ≤ Õ

(
AS2D

7
2

(∆σ
∗ )

2
+

(∆σ
∗ )

2S−2A2

DS− 5
2SS−3

)
, (16)

and summing up the three regret terms (9), (10), and (16) yields the claimed regret bound of the

theorem. □

5. An Error Bound for Estimating the Diameter and SAT-RL2 As already mentioned,

SAT-RL employs GOSPRL-Diam to estimate the diameter of the underlying MDP (in lines 9–11

of SAT-RL) in order to guarantee that the empirical MDP is communicating before proceeding.

Here we discuss an alternative approach to achieve that. In fact, instead one can simply perform an



Hajiabolhassan and Ortner: Online Regret Bounds for Satisficing in MDPs
Article submitted to Mathematics of Operations Research 15

ordinary exploration episode using GOSPRL (as in lines 17–21 of SAT-RL), in case the empirical

MDP is not communicating. The respective complete algorithm, which we call SAT-RL2, is shown

as Algorithm 3 in Appendix C.1.

For the regret analysis of SAT-RL2 one has to consider the steps in these additional exploration

episodes, until the empirical MDP becomes communicating. The following theorem provides a

bound on the approximation error for the diameter estimate one obtains from the empirical MDP.

This result is of interest in itself and might be useful in other contexts.

THEOREM 3. Let M = (S,A, r, p) be a communicating MDP with diameter D and consider

another MDP M̂ = (S,A, r̂, p̂) over the same state-action space such that 4 for all s∈ S and a∈A∑
s′∈S

∣∣p̂(s′|s, a)− p(s′|s, a)
∣∣< ε,

where ε < ℓ−2
ℓ(ℓD−1)

for some positive integer ℓ≥ 3. Then the diameter of M̂ is at most ℓ2D− ℓ.

A proof of Theorem 3 is given in Appendix C.2. Appendix C.3 provides a bound on the expected

regret of SAT-RL2 that is of the same order as the bound given in Theorem 2 for SAT-RL.

6. The General Case We have seen that when the satisfaction level σ is attained by the

optimal policy, we can have constant σ-regret. What can we hope for when it is not known whether

ρ∗ > σ? Obviously, when ρ∗ < σ it is not possible to have constant σ-regret anymore, as the latter

will always be linear in T . However, a reasonable aim in this case would be to re-establish standard

online regret bounds with respect to ρ∗, just as those given in Theorem 1 for UCRL2. In the

following, we present the algorithm SAT-UCRL, which exactly achieves that: When σ is below ρ∗,

we have constant σ-regret just as for SAT-RL. If however ρ∗ ≤ σ, we show bounds on the expected

classic regret with the same dependency on T as those given in Theorem 1. These results generalize

the findings of [19] from the bandit to the MDP setting.

6.1. Algorithm SAT-UCRL Our proposed algorithm SAT-UCRL is shown as Algorithm 2.

It resembles SAT-RL, only that now in exploration episodes we do not use GOSPRL but UCRL2.

As already mentioned, UCRL2 itself uses (internal) episodes in which it follows a fixed policy. In

order to differentiate between episodes of SAT-UCRL and these internal episodes of UCRL2, in

the following we will refer to the latter as sub-episodes of UCRL2. As by definition of UCRL2

4 The following condition means that M̂ is environmentally an ε-approximation of M , as defined in Appendix A.2.
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Algorithm 2 SAT-UCRL for the general RL setting
1: Input: state space S, action space A, satisfaction level σ, horizon T

2: Initialization:

3: Set confidence level δg := 1
2

and accuracy level εg := 1
2

.

4: Set initial sampling number b := S+1 and bu :=
AS
8

.

5: Define function b̄ : S ×A→N to be b̄(s, a) = b for any (s, a).

6: while an action a∈A at some state s∈ S has not been chosen b̄(s, a) times do

7: Run GOSPRL(b̄, δg).

8: For any (s, a)∈ S ×A, set b̄(s, a) :=max{0, b−N(s, a)}.

9: end while

10: while the diameter of the estimated MDP M0 is infinite do

11: Run GOSPRL-Diam(δg, εg) to estimate the diameter of M .

12: end while

13: for episodes k= 1,2, . . . do

14: Compute an optimal policy πk on Mk that induces a unique irreducible class Iπk
.

15: if ρπk
(Mk, sk)≥ σ then perform exploitation episode:

16: Play πk until all states in Iπk
have been visited at least once.

17: else perform exploration episode using UCRL2 with confidence parameter δ = 1
3T

:

18: Set bu := 8bu.

19: while the length of the current episode is below bu do

20: Run a sub-episode of UCRL2.

21: end while

22: end if

23: end for

these sub-episodes increase with time, also the length of our exploration episodes is chosen to

be increasing (cf. line 18). That way, in an exploration episode of SAT-UCRL in general several

sub-episodes of UCRL2 are run, which guarantees that different policies are employed.

In order to facilitate the analysis, in the following we assume that the exploration episodes

employing UCRL2 do not use any samples of the exploitation episodes. In practice, it would of

course speed up convergence and hence improve the algorithm, if UCRL2 would use these samples

as well. Concerning computational complexity, similar to SAT-UCRL the computationally most
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elaborate step of SAT-UCRL is the calculation of the optimal policy in an MDP. Due to the use of

UCRL2 this also concerns MDPs with continuous action space, cf. [15]. Still, the computation can

be done in polynomial time as shown in Section 38.5.2 of [17].

6.2. Regret Bounds for SAT-UCRL Now we present the promised bounds on the (σ-)

regret of SAT-UCRL. We start with the bound on the standard online regret, when σ cannot be

attained by any policy.

THEOREM 4. Let σ ≥ ρ∗. For any initial state s1 and any T > 1, the expected regret of SAT-

UCRL with respect to ρ∗ is bounded by

1+34DS
√

AT log (3T 2)+ Õ

(
AS2D3

W

(∆σ,−)2

)
,

as well as

342AS2D2 log(T )

∆g

+
∑
a,s

[
1+ log2( max

π:π(s)=a
Tπ)

]
max

π:π(s)=a
Tπ + Õ

(
AS2D3

W

(∆σ,−)2

)
,

where Tπ is as defined in Theorem 1. The Õ notation hides logarithmic dependencies on A,S,DW ,

∆σ,−, and ∆σ
∗ .

Proof. Similar to eq. (2) in the proof of Theorem 2, we first decompose the regret into three

terms, the regret accumulated in the initialization phase and in exploitation episodes as well as

the regret of exploration episodes. The regret in the initialization phase can be bounded just as

in (10) in the proof of Theorem 2. Similarly, the regret accumulated in exploitation episodes can

be analyzed just as the respective exploitation regret in the proof of Theorem 2, with the only

difference that we now consider a per-step regret of 1 instead of ∆σ,+. Accordingly, we obtain an

upper bound on the regret in exploitation episodes of

Õ

(
AS2D3

W

(∆σ,−)2

)
.

This term also subsumes the already mentioned regret in the initialization phase.

Finally, in order to bound the accumulated regret of exploration episodes we can simply apply

Theorem 1, noting that the proof of [15] also works when the initial state of an episode does not

coincide with the last visited state of the previous episode but is chosen arbitrarily. Summing up

the three regret terms gives the claimed bound. □
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If σ < ρ∗, we can show also for SAT-UCRL that the σ-regret is bounded by a constant. Note that

as in Corollary 1, this implies constant regret with respect to ρ∗ in case σ > ρ∗−∆g.

THEOREM 5. If σ < ρ∗, then the σ-regret of SAT-UCRL is bounded by a constant independent

of T .

Proof. Once more we decompose the regret into three terms, the initialization regret, the

exploitation regret, and the exploration regret. As the algorithm is the same as SAT-RL in the ini-

tialization phase and exploitation episodes, the first two regret terms can simply be analyzed as in

the proof of Theorem 2. This yields an upper bound on both terms of

Õ

(
∆σ,+AS2D3

W

(∆σ,−)2

)
. (17)

What remains to do is to analyze the exploration regret due to episodes in which UCRL2 is

played, which happens when all policies are empirically below σ. In the following, we consider

only these exploration episodes and renumber them using the variable m= 1,2, . . . instead of k in

order to indicate that episode m is the m-th exploration episode. Writing b
(m)
u for the value of bu in

exploration episode m, by lines 4 and 18 of the algorithm, it holds that b(m)
u = 23(m−1)AS. This also

provides a lower bound on the number of steps in episode m (cf. line 19 of the algorithm). In order

to obtain an upper bound, we note that by the (sub-)episode termination criterion5 of UCRL2, a

sub-episode of UCRL2 starting at some step t has length at most t. (Here we only consider steps

in exploration episodes.) Therefore, the maximal length ℓ
(m)
+ of exploration episode m is upper

bounded by
∑m−1

i=1 2ℓ
(i)
+ +2b

(m)
u and a simple proof by induction on m shows that ℓ(m)

+ ≤ 3b
(m)
u <

23m−1AS.

Now we distinguish between long and short exploration episodes. That is, defining θM , θ′M as

in Appendix D, and θ∗ as in (13), we set β to be the smallest positive integer for which 23β−5

β
≥

max{θM , (θ∗+1)2θ′M}. Then we decompose the exploitation regret with respect to β into
β∑

m=1

E[Lm∆
σ
πm

] +
∑
m>β

E[Lm∆
σ
πm

], (18)

now using the changed episode numbers and hence slightly abusing notation, so that e.g. Lm

denotes the episode length for the m-th exploration episode. Using the maximal episode length of

23m−1AS, we can bound the first term by
β∑

m=1

E[Lm∆
σ
πm

] ≤
β∑

m=1

23m−1AS∆σ,+ ≤ 23β+2

7
AS∆σ,+. (19)

5 A (sub-)episode of UCRL2 terminates when the number of visits to some state-action pair has doubled [15].
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Thus let us consider the regret caused by exploration episodes m> β. As shown by Lemma 12

in Appendix D each such exploration episode m> β contains a reliable sub-episode of length at

least
⌈
23m−5

m

⌉
, which employs an optimal policy with probability at least 1− 1

3T
. In the following,

we will indeed assume that each considered exploration episode m>β has a reliable sub-episode,

in which the optimal policy is played.

For m≥ β we define the following events:

• Am denotes the event that each state-action pair of the irreducible class of the optimal policy

(played in the reliable sub-episode) has been visited at least 2m−βθ∗ times during episode m, where

θ∗ is as defined in (13).

• Bm denotes the event that Am holds, and that rewards or transition probabilities of some state-

action pair in the irreducible class of the optimal policy are not estimated with accuracy ε∗ after

episode m, where ε∗ :=
√

2S log(2θ∗)
θ∗

, cf. Appendix B.2.

Note that when Am and Bm hold, an accuracy of ε∗ has been reached, which guarantees that the

optimal policy of the empirical MDP will be satisficing with high probability, cf. Appendix B.2.

Accordingly, exploration episode m playing UCRL2 will only occur, when for the previous explo-

ration episode m− 1 we have Am−1 or Bm−1. (Recall that samples that may have been collected

in the meantime in exploitation episodes are not used in exploration episodes.) Therefore we have

∑
m>β

E
[
Lm∆

σ
πm

]
=

∑
m>β

P(Am−1)E
[
Lm∆

σ
πm

∣∣Am−1

]
+

∑
m>β

P(Bm−1)E
[
Lm∆

σ
πm

∣∣Bm−1

]
. (20)

Concerning the first term of (20), we again use the upper bound of 23m−1AS on the length of

exploration episode m. Further, by Lemma 14 in Appendix D, the probability of Am is bounded

by (1
2
)(θ∗+1)2m−β−1, so that

∑
m>β

P(Am−1)E
[
Lm∆

σ
πm

∣∣Am−1

]
≤

∑
m>β

(23m−1AS∆σ,+)(1
2
)(θ∗+1)2m−1−β−1

≤ 23β+5−θ∗AS∆σ,+. (21)

For an upper bound on the second term of (20), we apply the same proof technique as for Lem-

mas 9, 10, and 11 in Appendix B. That is, we set d(m) = 2m−β and obtain, recalling that Am−1

holds in case of Bm−1,
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m>β

P(Bm−1)E[Lm∆
σ
πm

|Bm−1]

≤
∑
m>β

23m−1AS∆σ,+
∑
s,a

P
(
|rm(s, a)− r(s, a)| ≥ ε∗ ∧Nm(s, a)≥ 2m−β(θ∗+1)

)
+

∑
m>β

23m−1AS∆σ,+
∑
s,a

P
(∥∥pm(·|s, a)− p(·|s, a)

∥∥
1
≥ ε∗ ∧Nm(s, a)≥ 2m−β(θ∗+1)

)
≤
∑
m>β

23m−1AS∆σ,+
∑
s,a

∑
t≥2m−β(θ∗+1)

P
(
|rt(s, a)− r(s, a)| ≥ ε∗

)
+

∑
m>β

23m−1AS∆σ,+
∑
s,a

∑
t≥2m−β(θ∗+1)

P
(∥∥pt(·|s, a)− p(·|s, a)

∥∥
1
≥ ε∗

)
≤
∑
m>β

23mA2S∆σ,+

2d(m)S−S θ
d(m)S−1
∗ log(2θ∗)

< const · 2βA2S∆σ,+. (22)

Collecting all regret terms (17) – (22) and noting that none of them depends on the horizon T

complete the proof of the theorem. □

7. Conclusion Let us briefly summarize our findings, cf. also Table 1 for a quick overview.

When ρ∗ > σ we have constant σ-regret (Theorems 2 and 5). Moreover, if ρ∗ > σ > ρ∗ −∆g then

even the expected regret with respect to ρ∗ is constant (Corollary 1). Otherwise, when σ≤ ρ∗−∆g,

our algorithms may exploit a suboptimal policy, so that the regret with respect to ρ∗ will be linear.

However, we note that it is in general not possible to have a consistent algorithm which at the same

time has constant σ-regret and sublinear regret with respect to ρ∗. This already holds in the bandit

setting, where any consistent algorithm will keep playing each suboptimal arm (see e.g. Section 16

of [17]), hence accumulating σ-regret.

When ρ∗ < σ, the σ-regret necessarily will be linear, but it is possible to obtain bounds on the

expected regret with respect to ρ∗ as for UCRL2 (Theorem 4). For the case ρ∗ = σ we however

cannot guarantee constant σ-regret. Although this seems to be possible, a different approach would

TABLE 1. Dependence of expected (σ-) regret on T .

Regime σ-regret regret wrt ρ∗

ρ∗ >σ > ρ∗ −∆g constant∗ constant∗

σ≤ ρ∗ −∆g constant∗ linear(∗)

ρ∗ <σ linear∗ as for UCRL2∗ [15]
ρ∗ = σ linear as for UCRL2∗ [15]

The table shows the dependence of the upper bounds for SAT-
UCRL on the expected (σ-)regret on the horizon T . A star indicates
that the bound is optimal with respect to T . When σ ≤ ρ∗ −∆g ,
then no consistent algorithm can have constant σ-regret and sub-
linear regret with respect to ρ∗.
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be necessary to achieve it. We note that in the bandit setting, [19] points out an alternative algorithm

adapted from [13] that achieves constant σ-regret in the bandit setting when σ coincides with the

optimal reward.

While we achieve best possible bounds with respect to the horizon T in all cases except when

σ = ρ∗, we did not try to optimize the other parameters in the constant regret bounds, and they

are unlikely to be optimal. Moreover, for the distance ∆σ
∗ of the optimal policy to the level σ, it

is unclear even in the bandit setting whether an appearance is necessary, that is, respective lower

bounds are still missing.

Another improvement that seems desirable and not out of reach is to design an algorithm that

does not take the state space as input, but instead only works with the part of the state space it has

discovered by itself so far.

Appendix A: Useful Results

A.1. Concentration Inequalities The following concentration inequalities are derived from

the Hoeffding-Chernoff bound.

LEMMA 1. Let r̄t(s, a) and p̄t(s
′|s, a) be the empirical average reward and the empirical tran-

sition probabilities after observing t samples. Then

P
(
|r̄t(s, a)− r(s, a)| ≥ ε

)
≤ 2 exp(−2tε2)

and

P
(∣∣p̄t(s′|s, a)− p(s′|s, a)

∣∣ ≥ ε
)
≤ 2 exp(−2tε2).

A.2. MDP Approximations This section collects results about the error in average reward

when working with MDP approximations that have slightly different rewards and transition prob-

abilities.

DEFINITION 3. An MDP M̂ = (S,A, r̂, p̂) is environmentally an ε-approximation of another

MDP M = (S,A, r, p), if they have the same state and action space and for all s∈ S and a∈A,∑
s′∈S

∣∣p̂(s′|s, a)− p(s′|s, a)
∣∣< ε.
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Moreover, if in addition for all s∈ S and a∈A,

|r̂(s, a)− r(s, a)|< ε,

then M̂ is called an ε-approximation of M .

The following result bounds the error in optimal average reward when working with an ε-

approximation.

LEMMA 2 (Ortner et al. [20]). Let M be a communicating MDP with optimal policy π∗ sat-

isfying the Bellman equations. If M̂ is an ε-approximation of M , then for any initial state s1,∣∣ρπ∗(M)− ρπ∗(M̂, s1)
∣∣ ≤ ε(D(M)+ 1).

Consider two MDPs M , M̂ on the same state and action space, and let π be an arbitrary policy

that induces an irreducible class Iπ ⊆S on M̂ . Assume that the definition of ε-approximation holds

just for the states of Iπ and the actions of π. That is, for all s∈ Iπ we have∑
s′∈S

∣∣p̂(s′|s, π(s))− p(s′|s, π(s))
∣∣< ε

and ∣∣r̂(s, π(s))− r(s, π(s))
∣∣ < ε.

Then we call M̂ an (ε, Iπ)-approximation of M . The following result is a consequence of Lemma 2.

LEMMA 3. Let M = (S,A, r, p) and M̂ = (S,A, r̂, p̂) be two MDPs with the same state space

and action space, and assume that M is communicating. Suppose that for any (s′, s, a)∈ S ×S ×

A, if p̂(s′|s, a) > 0 then also p(s′|s, a) > 0. Let π∗ be an optimal policy of M̂ inducing a unique

irreducible class Îπ∗ . If M̂ is an (ε, Îπ∗)-approximation of M , then for any initial state s1,

ρπ∗(M,s1) ≥ ρπ∗(M̂, s1)− ε(DW (M)+ 1).

Proof. Since p̂(s′|s, π∗(s))> 0 implies that p(s′|s, π∗(s))> 0, one can conclude that policy π∗

in M also has a unique irreducible class Iπ∗ containing Îπ∗ . This means that by starting from any

state and following π∗ in M , we reach Îπ∗ after a while.

Now construct two new MDPs M ′ = (Iπ∗ ,{a∗}, r′, p′) and M̂ ′ = (Iπ∗ ,{a∗}, r̂′, p̂′) as follows.

The state space of both MDPs is Iπ∗ and in each state s there is a unique action a∗ := π∗(s)

available. For any states s∈ Îπ∗ and s′ ∈ Iπ∗ , the transition probabilities p′(s′|s, a∗) and p̂′(s′|s, a∗)
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are the same as p(s′|s, π∗(s)) and p̂(s′|s, π∗(s)), respectively. Similarly, the rewards r′(s, a∗) and

r̂′(s, a∗) are the same as r(s, π∗(s)) and r̂(s, π∗(s)), respectively. For any other pair s, s′ where

s ̸∈ Îπ∗ , the transition probabilities p′(s′|s, a∗) and p̂′(s′|s, a∗) are the same as p(s′|s, π∗(s)). Also

the respective rewards r′(s, a∗) and r̂′(s, a∗) are the same as r(s, π∗(s)) for s ̸∈ Îπ∗ . It is easy to

check that M ′ is communicating with diameter at most Dπ∗(M), and that the average reward of

π∗ in M ′ and M̂ ′ coincides with ρπ∗(M,s1) and ρπ∗(M ′, s1), respectively. As M ′ only has a single

policy π∗ this policy is optimal and satisfies the Bellman equations. Since M̂ ′ is an ε-approximation

of M ′, the claim follows by Lemma 2. □

A.3. A Combinatorial Lemma Let U1,U2, . . . ,Un be a sequence of non-empty multi-subsets

of a universal set U . For any x ∈ U , let Ni(x) denote the number of occurrences of the element x

in sets Uj with j < i. Here all occurrences of x in the multi-subsets Uj are counted. We define the

frequency of a set Ui to be

freq(Ui) :=min
x∈Ui

Ni(x).

LEMMA 4. Let U1,U2, . . . ,Un be a sequence of non-empty multi-subsets of a universal set U .

For any non-negative integer f , there are at most |U | members of this sequence that have fre-

quency f .

Proof. Let 1≤ f1 < f2 < · · ·< fℓ ≤ n be distinct positive integers, such that the frequency of

each of Uf1 ,Uf2 , . . . ,Ufℓ is f . By definition, for any 1≤ j ≤ ℓ there exists an xfj ∈ Ufj such that

freq(Ufj) = f = Nfj(xfj). Note however that for any two distinct sets Ufi ,Ufj with fi > fj we

have xfi ̸= xfj , since otherwise we would obtain the contradiction

freq(Ufi) =Nfi(xfi)≥ 1+Nfj(xfi) = 1+Nfj(xfj) = 1+ freq(Ufj) = f +1.

This completes the proof. □

A.4. Another Useful Lemma

LEMMA 5. Let c, z be real numbers such that z ≥ ⌈2c log(4c)⌉ ≥ e
2
, where e is Euler’s number.

Then
log(2z)

z
<

1

c
.

Proof. Note that log(2z)
z

is decreasing when z ≥ e
2
. For z = 2c log(4c) it is straightforward to

check that the inequality log(4c log(4c))
2c log(4c)

< 1
c

holds, which completes the proof. □
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Appendix B: Analysis of SAT-RL This appendix collects results concering the quality of

MDP approximations that are used to bound the error when using the empirical MDP instead of

the true one.

B.1. The Empirical MDP in Exploitation Episodes In this section, we show that in an

exploitation episode, the probability of running a non-satisficing policy is low, as soon as the fre-

quency freqk of the episodes k becomes large enough. Let us set

ε=

√
2S log(2θ)

θ
, where θ=

⌈
4S(DW +1)2

(∆σ,−)2
log

(
8S(DW+1)2

(∆σ,−)2

)⌉
.

Intuitively, ε is the accuracy needed to guarantee that the policy πk is above σ (cf. Proposition 3

below), while θ will be seen to be a sufficient frequency to achieve this accuracy with high proba-

bility (cf. Lemmas 6 and 7).

PROPOSITION 3. If Mk is an (ε, Iπk
)-approximation of M , then πk has average reward above

σ in M .

Proof. Setting c= 2S(DW +1)2/(∆σ,−)2, we have θ= ⌈2c log(4c)⌉. Then by Lemma 5,

ε <

√
2S

c
=

∆σ,−

(DW +1)
,

so that

ε(DW +1)<∆σ,− ≤∆σ
πk
.

Accordingly, as soon as Mk is an (ε, Iπk
)-approximation of M , we have by Lemma 3 that

ρ(πk, sk) ≥ ρk(πk, sk)− ε(DW +1) > σ−∆σ
πk
. (23)

Now if πk had average reward below σ, then ∆σ
πk

> 0 and we would obtain from (23) the contra-

diction

ρ(πk, sk)>σ−∆σ
πk

= ρ(πk, sk).

This shows that ∆σ
πk

= 0 and (23) implies that policy πk has average reward above σ on M . □

In Lemmas 6 and 7 below, we show that when freqk > θ, then with high probability Mk is an

(ε, Iπk
)-approximation of M . This implies that πk is satisficing.

Let Vk be the set of all state-action pairs (s, πk(s)), such that s ∈ Iπk
and either rewards or

transition probabilities are not estimated well enough at the start of exploitation episode k. That is,

for s∈ Iπk
we have

∑
s′∈S |pk(s′|s, πk(s))− p(s′|s, πk(s))| ≥ ε or |rk(s, πk(s))− r(s, πk(s))| ≥ ε.

Recall that r̄t(s, a) and p̄t(s
′
∣∣s, a) stand for the empirical average reward and the empirical tran-

sition probability after observing exactly t samples.
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LEMMA 6. For any state s∈ S and action a∈A, we have

∑
t≥θ+1

P
(
|r̄t(s, a)− r(s, a)| ≥ ε

)
≤ 1

SθS−1 log(2θ)
.

Proof. For any state s∈ S , action a∈A, and positive integer t≥ θ+1, by Lemma 1,

P
(
|r̄t(s, a)− r(s, a)| ≥ ε

)
= P

(
|r̄t(s, π(s))− r(s, π(s))| ≥

√
2S log(2θ)

θ

)
≤ 2 exp

(
−2t

(√
2S log(2θ)

θ

)2
)

≤ 2 exp
(

−4St log(2θ)
θ

)
.

Accordingly,

∑
t≥θ+1

P
(
|r̄t(s, a)− r(s, a)| ≥ ε

)
≤

∞∑
t=θ+1

2 exp
(

−4St log(2θ)
θ

)
≤

∫ ∞

θ

2 exp
(

−4St log(2θ)
θ

)
dt

=
1

S24S+1θ4S−1 log(2θ)

≤ 1

SθS−1 log(2θ)
. □

LEMMA 7. For any state s∈ S and action a∈A, we have

∑
t≥θ+1

∑
s′

P
(∣∣p̄t(s′|s, a)− p(s′|s, a)

∣∣≥ ε
)
≤ 1

SθS−1 log(2θ)
.

Proof. In [30], it is shown that for the L1-deviation of the true distribution and the empirical

distribution over m distinct events from t samples, it holds that

P
(
∥p̄t(·)− p(·)∥1 ≥ ε

)
≤ (2m − 2) exp

(
− tε2

2

)
. (24)

For any state s∈ S and action a∈A, the number of s′ ∈ S for which p(s′|s, a)> 0 is at most S.

Accordingly, by (24) for any t≥ θ+1,

P
(∥∥p̄t(·|s, a)− p(·|s, a)

∥∥
1
≥
√

2S log(2θ)
θ

)
≤ 2S exp

(
− t

2

(√
2S log(2θ)

θ

)2
)

≤ 2S exp
(
−St log(2θ)

θ

)
.
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Hence, ∑
t≥θ+1

∑
s′

P
(∣∣p̄t(s′|s, a)− p(s′|s, a)

∣∣≥ ε
)
≤

∑
t≥θ+1

2S exp
(
−St log(2θ)

θ

)
≤

∫ ∞

θ

2S exp
(
−St log(2θ)

θ

)
dt

≤ 1

SθS−1 log(2θ)
. □

Now, we are ready to show that the total probability of choosing a non-satisficing policy in

exploitation episodes is bounded by a constant, provided that the frequency of each episode is

sufficiently large.

LEMMA 8. For any positive integer n, we have
n∑

k=1

P
(
ρk(πk, sk)≥ σ ∧ ρ(πk, sk)<σ ∧ freqk ≥ θ+1

)
≤ 2A

θS−1 log(2θ)
.

Proof. From Proposition 3 we know that when Mk is an (ε, Iπk
)-approximation of M , then πk

has average reward above σ in M . Accordingly, if ρπk
(Mk, sk)≥ σ and ρ(πk, sk)< σ, then there

has to be a state s∈ Iπk
for which (s, πk(s))∈ Vk. Hence, by Lemmas 6 and 7 we have

n∑
k=1

P
(
ρk(πk, sk)≥ σ ∧ ρ(πk, sk)<σ ∧ freqk ≥ θ+1

)
≤

n∑
k=1

P
(
∃(s, a)∈ Vk : πk(s) = a∧Nk(s, a)≥ θ+1

)
≤

n∑
k=1

∑
s,a

P
(
|rk(s, a)− r(s, a)| ≥ ε∧ s∈ Iπk

∧ πk(s) = a∧Nk(s, a)≥ θ+1
)

+
n∑

k=1

∑
s,a

P
(∥∥pk(·|s, a)− p(·|s, a)

∥∥
1
≥ ε∧ s∈ Iπk

∧πk(s) = a∧Nk(s, a)≥ θ+1
)

≤
∑
s,a

∑
t≥θ+1

P(|r̄t(s, a)− r(s, a)| ≥ ε)+
∑
s,a

∑
t≥θ+1

P
(∥∥p̄t(·|s, a)− p(·|s, a)

∥∥
1
≥ ε

)
≤ 2A

θS−1 log(2θ)
. □

B.2. The Empirical MDP in Exploration Episodes Now, we show that after a certain num-

ber of exploration episodes, the probability of having another exploration episode is low. Similar

to the analysis of exploitation episodes we set

ε∗ =

√
2S log(2θ∗)

θ∗
, where θ∗ =

⌈
4S(D+1)2

(∆σ
∗ )

2
log

(
8S(D+1)2

(∆σ
∗ )

2

)⌉
. (25)
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Proposition 4 below shows that accuracy ε∗ is sufficient in order to identify an optimal policy π∗

as satisficing. Further, Lemmas 9 and 10 will show that accuracy ε∗ will be reached with high

probability, when the frequency of the respective episode exceeds θ∗.

PROPOSITION 4. If Mk is an ε∗-approximation of M , then ρk(π
∗, sk)>σ.

Proof. Setting c= 2S(D+1)2/(∆σ,∗)2 in Lemma 5, one can see that ε∗(D+1)<∆σ
∗ . Conse-

quently, if Mk is an ε∗-approximation of M , then by Lemma 2

ρk(π
∗, sk)≥ ρ∗− ε∗(D+1) = σ+∆σ

∗ − ε∗(D+1)>σ. □

Accordingly, as soon as Mk is an ε∗-approximation of M , no exploration episode is played

anymore (cf. line 14 of the algorithm). Subsequently, Lemmas 9 and 10 show that with high prob-

ability, Mk is indeed an ε∗-approximation of M , when freqk > θ∗. The following arguments are

similar, yet a bit more general than those given in Section B.1, and will later also be needed in the

analysis of the general algorithm.

Let V ∗
k be the set of all state-action pairs (s, a) for which rewards or transition probabilities

are not estimated well enough at the start of exploration episode k. That is, for (s, a) in V ∗
k we have∑

s′∈S |pk(s′|s, a)− p(s′|s, a)| ≥ ε∗ or |rk(s, a)− r(s, a)| ≥ ε∗.

LEMMA 9. For any state s∈ S , action a∈A, and positive integer d≥ 1, we have∑
k

P
(
ρk(πk, sk)<σ ∧ freqk ≥ dθ∗+1∧ |rk(s, a)− r(s, a)| ≥ ε∗

)
≤ 1

S2dS−SθdS−1
∗ ln(2θ∗)

.

Proof. If freqk ≥ dθ∗+1, then any state-action pair has been visited at least dθ∗+1 times prior

to episode k. For any state s∈ S and action a∈A, we have∑
k

P
(
ρk(πk, sk)<σ ∧ freqk ≥ dθ∗+1∧ |rk(s, a)− r(s, a)| ≥ ε∗

)
≤

∑
t≥dθ∗+1

P
(
|r̄t(s, a)− r(s, a)| ≥ ε∗

)
≤

∑
t≥dθ∗+1

2 exp

(
−2t

(√
2S log(2θ∗)

θ∗

)2
)

≤
∑

t≥dθ∗+1

2 exp
(

−4St log(2θ∗)
θ∗

)
≤
∫ ∞

dθ∗

2 exp
(

−4St log(2θ∗)
θ∗

)
dt

≤ 1

S24dS+1θ4dS−1
∗ log(2θ∗)

<
1

S2dS−SθdS−1
∗ log(2θ∗)

. □
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LEMMA 10. For any state s∈ S , action a∈A, and positive integer d≥ 1, we have∑
k

P
(
ρk(πk, sk)<σ ∧ freqk ≥ dθ∗+1∧∥pk(·|s, a)− p(·|s, a)∥1 ≥ ε∗

)
≤ 1

S2dS−SθdS−1
∗ log(2θ∗)

.

Proof. For any state s∈ S and action a∈A, the number of s′ ∈ S for which p(s′|s, a)> 0 is at

most S. Accordingly, by (24) for any t≥ dθ∗+1,∑
k

P
(
ρk(πk, sk)<σ ∧ freqk ≥ dθ∗+1∧

∥∥pk(·|s, a)− p(·|s, a)
∥∥
1
≥ ε∗

)
≤

∑
t≥dθ∗+1

P
(∥∥p̄t(·|s, a)− p(·

∣∣s, a)∥∥
1
≥ ε∗

)
≤

∑
t≥dθ∗+1

2S exp

(
− t

2

(√
2S log(2θ∗)

θ∗

)2
)

≤
∑

t≥dθ∗+1

2S exp
(
−St log(2θ∗)

θ∗

)
≤
∫ ∞

dθ∗

2S exp
(
−St log(2θ∗)

θ∗

)
dt

≤ 1

S2dS−SθdS−1
∗ log(2θ∗)

. □

Finally, we show that the total probability of running exploration episodes is bounded by a

constant.

LEMMA 11. If ρ∗ >σ, then∑
k

P
(
ρk(πk, sk)<σ ∧ freqk ≥ dθ∗+1

)
≤ 2A

2dS−SθdS−1
∗ log(2θ∗)

.

Proof. If ρπ∗(Mk, sk) < σ, then Mk cannot be an ε∗-approximation of M by Proposition 4.

Hence, in this case V ∗
k cannot be empty, and we have by Lemmas 9 and 10,∑

k

P
(
ρk(πk, sk)<σ ∧ freqk ≥ dθ∗+1

)
≤

∑
k

P
(
ρk(π

∗, sk)<σ ∧ freqk ≥ dθ∗+1
)

≤
∑
k

P (∃(s, a)∈ V ∗
k :Nk(s, a)≥ dθ∗+1)

≤
∑
k

∑
s,a

P (|rk(s, a)− r(s, a)| ≥ ε∗ ∧Nk(s, a)≥ dθ∗+1)

+
∑
k

∑
s,a

P
(∥∥pk(·|s, a)− p(·|s, a)

∥∥
1
≥ ε∗ ∧Nk(s, a)≥ dθ∗+1

)
≤

∑
s,a

∑
t≥dθ∗+1

P (|r̄t(s, a)− r(s, a)| ≥ ε∗)+
∑
s,a

∑
t≥dθ∗+1

P
(∥∥p̄t(·|s, a)− p(·|s, a)

∥∥
1
≥ ε∗

)
≤ 2A

2dS−SθdS−1
∗ log(2θ∗)

□
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Algorithm 3 SAT-RL2: Satisficing without using GOSPRL for diameter estimation
1: Input: state space S, action space A, satisfaction level σ

2: Initialization:

3: Set confidence level δg := 1
2
, and initial sampling number b := S+1.

4: Define function b̄ : S ×A→N to be b̄(s, a) = b for any (s, a).

5: while an action a∈A at some state s∈ S has not been chosen b̄(s, a) times do

6: Run GOSPRL(b̄, δg).

7: For any (s, a)∈ S ×A, define b̄(s, a) :=max{0, b−N(s, a)}.

8: end while

9: for episodes k= 1,2, . . . do

10: Compute an optimal policy πk on Mk that induces a unique irreducible class Iπk
.

11: if Mk is communicating and ρπk
(Mk, sk)≥ σ then perform exploitation episode:

12: Play πk until all states in Iπk
have been visited at least once.

13: else perform exploration episode:

14: Set b := b+S.

15: while N(s, a)< b for some state-action pair (s, a) do

16: For any (s, a), set b̄(s, a) := b−N(s, a).

17: Run GOSPRL(b̄, δg).

18: end while

19: end if

20: end for

Appendix C: An Error Bound for Estimating the Diameter and SAT-RL2 In this part

of the appendix, we present an alternative algorithm that does not resort to GOSPRL-Diam to

estimate the diameter of the underlying MDP in order to guarantee that the empirical MDP is

communicating. Instead, we use a result that provides an error bound on how much the diameter

in the empirical MDP can deviate from its counterpart in the true MDP.

C.1. SAT-RL2: Estimation of the Diameter Without GOSPRL The algorithm SAT-RL2,

shown as Algorithm 3, skips the part of SAT-RL which uses GOSPRL-Diam to estimate the diam-

eter of the underlying MDP (i.e., lines 9–11 in SAT-RL). As already discussed, GOSPRL-Diam

is employed to guarantee that the empirical MDP is communicating before proceeding. Instead

SAT-RL2 just performs an ordinary exploration episode using GOSPRL (lines 15–19), in case the
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empirical MDP is not communicating (cf. line 11). Theorem 3 derived in the following section

provides a bound on the approximation error for the diameter estimate one obtains from the empir-

ical MDP. This result allows us to bound the number of exploration episodes one has to perform,

until the empirical MDP becomes communicating.

C.2. Approximation Error for the Empirical Diameter In this section, we give a proof of

Theorem 3, a bound on the approximation error when estimating the diameter of an MDP M by

its counterpart in an ε-approximation of M .

We start with some auxiliary definitions. Let Π be a multi-set consisting of S stationary policies

on an MDP M , such that for each state s ∈ S there exists a unique policy πs ∈ Π. Consider an

agent starting in some state s following policy πs ∈ Π for a while, and then changing to policy

πs′ ∈Π when being in some state s′. By iterating this procedure, we obtain a non-stationary policy.

We call such a policy semi-stationary and denote the set of semi-stationary policies of M by

ΠSem(M). Accordingly, we introduce the semi-diameter, which generalizes the notion of diameter

as follows.

DEFINITION 4. Consider the stochastic process defined by a semi-stationary policy π+ ∈
ΠSem(M) operating on an MDP M with initial state s. Let T (s′|M,π+, s) be the random variable

for the first time step in which state s′ is reached in this process. Then the semi-diameter of M is

defined as

DSem(M) = max
s ̸=s′∈S

min
π+∈ΠSem(M)

E
[
T (s′|M,π+, s)

]
.

Obviously, DSem(M) ≤ D(M) in any MDP M . Not surprisingly, the two notions coincide in

general.

PROPOSITION 5. For any MDP M ,

DSem(M) =D(M).

As Proposition 5 demonstrates, the notions of semi-stationary policies and semi-diameter do not

add anything substantial to the ordinary notions of stationary policy and diameter. However, they

are practical for the proof of Theorem 3, which we restate here for the sake of readability.

THEOREM 3. Let M = (S,A, r, p) be a communicating MDP with diameter D and M̂ =

(S,A, r̂, p̂) be environmentally an ε-approximation of M over the same state-action space, where

ε < ℓ−2
ℓ(ℓD−1)

for some positive integer ℓ≥ 3. Then the diameter of M̂ is at most ℓ2D− ℓ.
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Proof. Since the diameter of M is D, for any two states s and s′ there exists a policy πs,s′ ,

such that when following πs,s′ starting in s, we reach s′ in at most D steps on average. Here-

after, we call the process of starting in s and following policy πs,s′ a πs,s′-exploration. Perform-

ing such a πs,s′-exploration for ℓ steps in M generates a sequence s0s1 · · · sℓ with s0 = s and

p
(
si
∣∣si−1, πs,s′(si−1)

)
> 0 for 1≤ i≤ ℓ.

Now we are going to show that for any s, s′ ∈ S a πs,s′-exploration of ℓD−1 steps in M̂ visits s′

with probability higher than 1
ℓ
. For any sequence s0s1 · · · sℓ, let us consider the probabilities

Pπs,s′

M

(
s0s1 · · · sℓ

)
=

ℓ∏
i=1

p
(
si
∣∣si−1, πs,s′(si−1)

)
, and

Pπs,s′

M̂

(
s0s1 · · · sℓ

)
=

ℓ∏
i=1

p̂
(
si
∣∣si−1, πs,s′(si−1)

)
.

Further, we set

Pπs,s′
min

(
s0s1 · · · sℓ

)
=

ℓ∏
i=1

min
{
p
(
si
∣∣si−1, πs,s′(si−1)

)
, p̂
(
si
∣∣si−1, πs,s′(si−1)

)}
to be the minimal probability of generating the sequence s0s1 · · · sℓ, if we follow policy πs,s′ for

ℓ steps in M (resp. M̂ ) starting in s0.

For any finite sample space Ω, any function f : Ω→ R, and an event W ⊆ Ω, we set f(W ) :=∑
w∈Wf(w). Consider the sample spaces consisting of all possible πs,s′-explorations of ℓ steps in

M and M̂ , respectively:

WM(s, ℓ) =
{
s0s1 · · · sℓ

∣∣ s0 = s, si ∈ S, Pπs,s′

M (s0s1 · · · sℓ)> 0
}
,

WM̂(s, ℓ) =
{
s0s1 · · · sℓ

∣∣ s0 = s, si ∈ S, Pπs,s′

M̂
(s0s1 · · · sℓ)> 0

}
.

Further, let WM(s, s′, ℓ)⊆WM(s, ℓ) consist of all πs,s′-explorations of length ℓ in M that contain s′.

That is,

WM(s, s′, ℓ) =
{
s0s1 · · · sℓ

∣∣ s0 = s, sj = s′ for some 0≤ j ≤ ℓ, si ∈ S, Pπs,s′

M (s0s1 · · · sℓ)> 0
}
.

Denoting by WM(s, s′, ℓ) ⊆ WM(s, ℓ) the complement of WM(s, s′, ℓ), we have by Markov’s

inequality for any positive integer ℓ,

Pπs,s′

M

(
WM(s, s′, ℓD− 1)

)
≤ 1

ℓ
. (26)
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Since M̂ is environmentally an ε-approximation of M , we further have by our assumption on ε,

Pπs,s′
min

(
WM(s, ℓD− 1)∩WM̂(s, ℓD− 1)

)
≥ (1− ε)ℓD−1 ≥ 1− (ℓD− 1)ε >

2

ℓ
. (27)

We claim that

Pπs,s′
min

(
WM(s, s′, ℓD− 1)∩WM̂(s, ℓD− 1)

)
>

1

ℓ
. (28)

Indeed, otherwise it would follow from (27) that Pπs,s′
min

(
WM(s, s′, ℓD− 1)∩WM̂(s, ℓD− 1)

)
> 1

ℓ
,

and consequently

Pπs,s′

M

(
WM(s, s′, ℓD− 1)

)
≥ Pπs,s′

M

(
WM(s, s′, ℓD− 1)∩WM̂(s, ℓD− 1)

)
≥Pπs,s′

min

(
WM(s, s′, ℓD− 1)∩WM̂(s, ℓD− 1)

)
>

1

ℓ
,

which contradicts (26).

From (28) we can conclude that

Pπs,s′

M̂

(
WM(s, s′, ℓD− 1)∩WM̂(s, ℓD− 1)

)
>

1

ℓ
,

showing that if we run a πs,s′-exploration of ℓD− 1 steps in M̂ , then s′ will be visited with prob-

ability higher than 1
ℓ
. Now let us consider the following policy to estimate the diameter of M̂ . For

any two states s and s′, start from s and follow the policy πs,s′ for ℓD−1 steps in M̂ . If after at most

ℓD− 1 steps, the state s′ has not been reached, then for the current state s′′ follow the policy πs′′,s′

for another ℓD − 1 steps. Iterate this procedure until s′ is reached. In view of the expectation of

the geometric distribution, the expected number of necessary iterations is ℓ and hence the expected

number of steps until s′ is visited is at most ℓ(ℓD−1). This holds for any pair of states s, s′, so that

the semi-diameter of M̂ is bounded by ℓ2D− ℓ, and the theorem follows by Proposition 5. □

C.3. Regret Bound for SAT-RL2 As for SAT-RL we have a constant bound on the σ-regret

of SAT-RL2. The bound differs from Theorem 2 only in the constants.

THEOREM 6. If ρ∗ > σ, then the expected σ-regret of SAT-RL2 after any number of steps is

bounded by

Õ

(
AS2D

7
2

(∆σ
∗ )

2
+

(∆σ
∗ )

2S−2A2

DS− 5
2SS−3

+
∆σ,+AS2D3

W

(∆σ,−)2

)
,

where logarithmic dependencies on A,S,DW ,∆σ,−, and ∆σ
∗ are not shown.
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Proof. The theorem is derived analogously to Theorem 2. The main difference is that one

additionally has to take into account how many exploration episodes have to be performed, until the

empirical MDP is communicating with high probability. The respective number of steps in these

episodes can be bounded using Theorem 3 as follows. Choosing ℓ= 3 in Theorem 3 shows that if

the empirical MDP Mk is an ε′-approximation of M with ε′ < 1
9D

, then Mk has finite diameter, i.e.,

is communicating. Accordingly, it is sufficient if we set ε′ = ε∗
9

, because this implies (cf. the proof

of Proposition 4)

9ε′D < ε∗(D+1) < ∆σ
∗ ≤ 1,

whence ε′ < 1
9D

.

On the other hand, for a suitable constant c > 0,

ε′ =
1

9

√
2S log(2θ∗)

θ∗
≥

√
2S log(cθ∗)

cθ∗
.

Hence, we can replace θ∗ by cθ∗ in the derivations in Section B.2, and show that when the frequency

is at least cθ∗, then accuracy ε′ is achieved with high probability. In particular, an equivalent of

Lemma 11 for d= 1 holds, stating that
n∑

k=1

P
(
ρk(πk, sk)<σ ∧ freqk ≥ cθ∗+1

)
≤ 2A

(cθ∗)S−1 log(2θ∗)
.

Accordingly, as in each run of an exploration episode the frequency increases by S, after
⌈
cθ∗
S

⌉
exploration episodes the empirical MDP is an ε′-approximation of M with probability at least

1− 2A
(cθ∗)S−1 log(2θ∗)

. This will only cause an additional factor of c in the regret term of the exploration

part, so that the claimed bound holds. □

Appendix D: Details for the Proof of Theorem 5 We start looking at the two parameters

θM , θ′M . These are related to episodes which are sufficiently long to guarantee optimality or visits

in all states of the irreducible class, respectively.

D.1. Parameter θM The regret bounds of Theorem 1 also imply that when a sub-episode of

UCRL2 has sufficient length, the policy used in this sub-episode has to be optimal. Indeed, by

Theorem 1 the per-step regret after T steps is
34·DS

√
A log(T/δ)
√
T

with high probability. Accordingly,

when T is sufficiently large the per-step regret is below ∆g. Thus, let θM be the smallest positive

integer T such that
34 ·DS

√
A log(T/δ)√
T

<∆g.
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Then by Theorem 1 with probability at least 1− 1
3T

, any sub-episode of length ≥ θM in an explo-

ration episode of SAT-UCRL will use an optimal policy. If ρ∗ ≥ σ, then the optimal policy is

satisficing. Therefore, the same argument shows that any policy played by SAT-UCRL for at least

θM steps in a UCRL2-subepisode must be satisficing with high probability. This is used to show

the following lemma.

LEMMA 12. With probability at least 1− 1
3T

, any exploration episode m> β ≥ 4 contains a

reliable sub-episode.

Proof. We have already seen in the proof of Theorem 5 that the number of steps of the m-th

exploration episode is at least 23m−3AS and at most 23m−1AS. By Proposition 1, one can conclude

that the number of sub-episodes in episode m is at most (3m+2)AS ≤ 4mAS for m>β ≥ 4. (We

note that while Proposition 1 assumes that T is the total number of steps, the claim also holds for

any T consecutive steps starting at the beginning of some sub-epsiode.)

It follows that there is a sub-episode of length at least 23m−5

m
. Further, if 23m−5

m
≥ θM , then the

policy played in this sub-episode is optimal with an overall error probability of at most 1
3T

. □

D.2. Parameter θ′M Given a Markov chain C with S states, the expected number of steps it

takes to visit each state at least ℓ times is known as the ℓ-cover time of C, denoted by τℓ(C). We

have already noted that by Theorem 4.8 of [9] it holds that τ1(C) ≤ D(C)(1 + log(S)), so that

τℓ(C)≤ ℓD(C)(1+ log(S)).

In our MDP setting, for any optimal policy π with a unique irreducible class Iπ, we consider the

induced irreducible Markov chain Mπ restricted to states in Iπ. Then by Markov’s inequality, any

random walk of length 2ℓD(Mπ)(1+log(S)) starting in the irreducible class Iπ will visit each state

at least ℓ times with probability at least 1
2
. On the other hand, the irreducible class can be reached

in at most DW steps on average. In our case we are interested in the number of steps needed to

visit all states in the irreducible class of an optimal policy, and set

θ′M = max
π:ρ(π)=ρ∗

2D(Mπ)(1+ log(S))+ 2DW .

We summarize our observations in the following lemma.

LEMMA 13. Let π∗ be an optimal policy that induces a unique irreducible class Iπ∗ on an

MDP. Then following π∗ for ℓℓ′θ′M steps will visit each state in Iπ∗ at least ℓ times with probability

at least 1− (1
2
)ℓ

′−1.
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Proof. Following π∗ will reach the irreducible class with a probability of 1− (1
2
)ℓℓ

′ within the

first 2ℓℓ′DW steps. After reaching Iπ∗ , in the remaining 2ℓℓ′D(Mπ∗)(1+ log(S)) steps, each state

in Iπ∗ will be visited at least ℓ times with a probability of at least 1− (1
2
)ℓ

′ . □

D.3. Bounding P(Am) In the following, we use the definition of θ∗ in (25) of Section B.2.

LEMMA 14. For any m≥ β ≥ 4,

P(Am)≤
(
1
2

)(θ∗+1)2m−β−1
.

Proof. Since
⌈
23m−5

m

⌉
≥ 4

⌈
23(m−1)−5

m−1

⌉
for m>β ≥ 4, we have by definition of β that

⌈
23m−5

m

⌉
≥

4m−β
⌈
23β−5

β

⌉
≥ (2m−β(θ∗+1))2 θ′M . Choosing ℓ= ℓ′ = 2m−β(θ∗+1) in Lemma 13 then proves the

claim. □
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