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Abstract. We consider how state similarity in average reward Markov
decision processes (MDPs) may be described by pseudometrics. Intro-
ducing the notion of adequate pseudometrics which are well adapted to
the structure of the MDP, we show how these may be used for state
aggregation. Upper bounds on the loss that may be caused by working
on the aggregated instead of the original MDP are given and compared
to the bounds that have been achieved for discounted reward MDPs.

1 Introduction

Most work done in hierarchical reinforcement learning, relational reinforcement
learning, function approximation, factorization and state aggregation ultimately
addresses the problem of how to deal with large state spaces in Markov decision
processes (MDPs). Here we are concerned with state aggregation (for references
see [1]), which tries to convert the idea that similar states (with respect to
rewards and transition probabilities) may be aggregated to meta-states, and
calculation of the optimal policy may then be conducted on the meta-MDP.

For discounted reward MDPs, upper bounds on the loss that may be caused
by aggregation have been obtained by Even-Dar and Mansour [2] and more re-
cently by Ferns et al. [3]. We are particularly interested in the latter work, as it
has introduced the idea that state similarity may be described by pseudometrics.
Here we try to extend this approach, first by giving a general definition of ade-
quate metrics which are useful for state aggregation, and secondly by generalizing
the results of [3] and [2] to average reward MDPs.

The paper is organized as follows. After preliminary definitions in Sect. 2, we
show in Sect. 3 how to conduct state aggregation with respect to a given metric.
We consider a very simple distance function dv and give an upper bound on the
loss by state aggregation with respect to dv. Then in Sect. 4, we generally define
adequate distance functions and generalize the results accordingly. In Sect. 5, we
compare our bounds to those obtained in the discounted case and show why the
loss by aggregation may be significantly larger for average reward MDPs. In the
final section, we consider basic questions on the possibility of online aggregation
and other open problems for future research.



2 Preliminaries

Definition 1. A Markov decision process (MDP) M = 〈S, A, µ0, p, r〉 consists
of (i) a finite set of states S with (ii) a finite set of actions A available in each
state ∈ S, (iii) an initial distribution µ0 over S, (iv) the transition probabilities
pa(s, s′) which give the probability of reaching state s′ when choosing action a
in state s, and (v) the payoff distributions with mean ra(s) and support in [0, 1]
that specify the random reward obtained for choosing action a in state s.

A policy on an MDP M is a mapping π : S → A. Note that each policy π
induces a Markov chain Mπ on M. We will only consider ergodic MDPs, where
all policies induce ergodic Markov chains (in which states are reachable from
each other after a finite number of steps). For a policy π let µπ be the stationary
distribution of Mπ. Remember that for ergodic Markov chains with probability
matrix P this is the unique distribution µ with µP = µ (cf. e.g. [4]). The average
reward of π then may be defined as

ρπ(M) :=
∑
s∈S

µπ(s) rπ(s)(s).

A policy π∗ is optimal on M, if ρπ(M) ≤ ρπ∗(M) =: ρ∗ for all policies π. As ρπ

is independent of the initial distribution µ0, in the following we ignore µ0 and
write MDPs as tuples M = 〈S, A, p, r〉.

Definition 2. Given a set X and a nonnegative function d : X ×X → R, we
call (X, d) a pseudometric space with pseudometric d, if for all x, y, z ∈ X,

(i) d(x, x) = 0,

(ii) d(x, y) = d(y, x),
(iii) d(x, y) + d(y, z) ≤ d(x, z).

In general, for d being a metric on X it is additionally demanded that
d(x, y) = 0 implies x = y. As we will consider pseudometrics on state spaces
of MDPs, this is obviously not a desired property (i.e., we want to include the
possibility of having distinct states with equal properties).

Definition 3. Given a Markov chain C with state space S and stationary dis-
tribution µ, its mixing time with respect to state s is defined as

κs :=
∑
s′∈S

mss′µ(s′),

where mss′ is the mean first passage time from s to s′ if s 6= s′, while mss is the
mean return time to s. It can be shown that κs is independent of s (see [5]), so
that may speak of the the mixing time of C, denoted by κC.



3 A Simple Pseudometric for State Similarity

3.1 Block MDPs

Definition 4. An MDP M = 〈S, A, p, r〉 is a block MDP with blocks S1, . . . ,
Sk, if the block set {S1, . . . , Sk} is a partition of S, and for all a ∈ A, all s′′ ∈ S,
and all s, s′ in the same block Si,

ra(s) = ra(s′), and pa(s, s′′) = pa(s′, s′′).

A policy π on a block MDP is called uniform, if π(s) = π(s′) for s, s′ in the
same block.

Obviously, block MDPs are predestined to be aggregated. However, the fol-
lowing definition is also applicable to arbitrary MDPs.

Definition 5. Given an MDP M = 〈S, A, p, r〉 and a partition Ŝ = {S1, . . . ,

Sk} of its state space S, the aggregated MDP with respect to Ŝ is defined as
M̂ := 〈Ŝ, A, p̂, r̂〉, where

r̂a(Si) :=
1
|Si|

∑
s∈Si

ra(s), and p̂a(Si, Sj) :=
1
|Si|

∑
s∈Si

∑
s′∈Sj

pa(s, s′).

It is easy to check that p̂a(Si, ·) is a probability distribution for each Si ∈ Ŝ.
Any policy π on an aggregated MDP M̂ with state space Ŝ = {S1, . . . , Sk}

can be naturally extended to a policy πe on the original MDP M by

πe(s) := a, if s ∈ Sj and π(Sj) = a.

We continue with some considerations on block MDPs, the first one being
trivial if the stationary distribution µ in state s is interpreted as probability of
being in s after an infinite number of steps. However, we give a proof which
refers only to the properties of stationary distributions mentioned in Sect. 2.

Lemma 1. Let M = 〈S, A, p, r〉 be a block MDP with block set Ŝ = {S1, . . . ,

Sk} and respective aggregated MDP M̂ = 〈Ŝ, A, p̂, r̂〉. Given a policy π on M̂
and its extended counterpart πe on M with stationary distributions µ̂π and µπe ,
respectively, for all Si ∈ Ŝ,

µ̂π(Si) =
∑
s∈Si

µπe(s).

Proof. First, note that since M is a block MDP, for all s ∈ Sj and a ∈ A,

p̂a(Sj , Si) =
∑

s′∈Si

pa(s, s′). (1)



As µP = µ for the stationary distribution µ of a transition matrix P , we have1

for all s′ ∈ S, ∑
s∈S

µπe(s) p(s, s′) = µπe(s′). (2)

Let P̂ be the transition matrix of M̂ under π. We set µ′(Sj) :=
∑

s∈Sj
µπe(s)

for Sj ∈ Ŝ, and have by (2) and (1) for each Si ∈ Ŝ,

(µ′P̂ )Si =
∑

Sj∈bS
µ′(Sj) p̂(Sj , Si) =

∑
Sj∈bS

∑
s∈Sj

µπe(s) p̂(Sj , Si)

=
∑

Sj∈bS
∑
s∈Sj

µπe(s)
∑

s′∈Si

p(s, s′) =
∑

s′∈Si

∑
Sj∈bS

∑
s∈Sj

µπe(s) p(s, s′)

=
∑

s′∈Si

∑
s∈S

µπe(s) p(s, s′) =
∑

s′∈Si

µπe(s′) = µ′(Si).

Consequently, by the uniqueness of the stationary distribution we have µ̂π = µ′,
which proves the lemma. ut

Theorem 1. Each block MDP has an optimal policy which is uniform.

In the proof of Theorem 1 we will make use of a minor result about optimal
policies on ergodic MDPs.

Definition 6. Given policies π1, . . . , π` on an MDP with state space S, a policy
π is called a combination of π1, . . . , π`, if for each s ∈ S there is an i ∈ {1, . . . , `}
such that π(s) = πi(s).

The following proposition can be derived from the Bellman equations, which
may also be used to prove Theorem 1 directly (cf. the proof of the more general
Theorem 4 in Sect. 4 below). As a corollary to a more general result Proposition 1
has been proved in [6].

Proposition 1. On ergodic MDPs, any combination of optimal policies is op-
timal.

Proof of Theorem 1. Consider an arbitrary non-uniform, optimal policy π∗ on a
block MDP M with blocks S1, . . . , Sk. Take some block Sj = {s1, . . . , sm} on
which π∗ is not uniform. As M is a block MDP, all states in Sj have the same
rewards and transition probabilities under each action a ∈ A. Hence, a policy π
is optimal, if it coincides with π∗ on S \Sj and swaps the actions in Sj according
to some permutation σ : Sj → Sj , that is, π(si) = π∗

(
σ(si)

)
for i = 1, . . . ,m.

Thus in particular, for each i ∈ {1, . . . ,m} there is an optimal policy π such
that π(si) = π∗(s1). It follows from Proposition 1 that there is an optimal policy
which is uniform on Sj . This argument can be repeated for each single block to
yield the theorem. ut
1 In the following, we usually skip indices for actions when the policy is fixed.



3.2 A Simple Pseudometric, ε-Aggregation, and an Upper Bound

Given an MDPM = 〈S, A, p, r〉 and positive constants cr, cp, we set for s, s′ ∈ S,

dv(s, s′) := max
a∈A

{
cr

∣∣ra(s)− ra(s′)
∣∣ + cp

∑
s′′∈S

∣∣pa(s, s′′)− pa(s′, s′′)
∣∣}.

It is easy to check that dv is a pseudometric on S. However, dv is not a metric. If
dv(s, s′) = 0, then all rewards and transition probabilities coincide in states s and
s′, which however does not entail that s = s′. The pseudometric dv is basically
the bisimulation metric induced by the total variation probability metric, which
has been introduced for discounted MDPs in [3]. Ferns et al. consider also other
probability metrics that measure the distance between two transition probability
distributions pa(s, ·) and pa(s′, ·).

Definition 7. For fixed ε > 0, an ε-partition of the state space S with respect
to a pseudometric d on S is a minimal partition of S into aggregated states (or
blocks) S1, . . . , Sk such that for s, s′ ∈ Si one has d(s, s′) < ε. Minimality here
means that one cannot aggregate any Si, Sj to Si∪Sj, that is, for distinct Si, Sj

there are s ∈ Si, s′ ∈ Sj with d(s, s′) ≥ ε.
When aggregating an MDP M with respect to an ε-partition we speak of an

ε-aggregation of M.

Theorem 2. Let M = 〈S, A, p, r〉 be an MDP and M̂ = 〈Ŝ, A, p̂, r̂〉 an ε-
aggregation of M with respect to dv. Then for each policy π on M̂ and its
respective extended policy πe on M,∣∣ρπe(M)− ρπ(M̂)

∣∣ <

(
1
cr

+
κMπ − 1

cp

)
ε,

where κMπ is the mixing time of the Markov chain induced by π on M.

For the proof of Theorem 2 we will need the following result of [5] on pertur-
bations of Markov chains.

Theorem 3 (Hunter[5]). Let C, C̃ be two ergodic Markov chains on the same
state space S with transition probabilities p(·, ·), p̃(·, ·) and stationary distribu-
tions µ, µ̃. Then∥∥µ− µ̃

∥∥
1
≤ (κC − 1) max

s∈S

∑
s′∈S

∣∣p(s, s′)− p̃(s, s′)
∣∣,

where κC is the mixing time of C.

Proof of Theorem 2. Let us first modify the original MDP M by redefining the
rewards in each state s ∈ Sj (1 ≤ j ≤ k := |Ŝ|) and each a ∈ A as

r̃a(s) :=
1
|Sj |

∑
s′∈Sj

ra(s′).



Then using the assumption that two states s, s′ in the same block Sj have dis-
tance dv(s, s′) < ε, the difference in the average rewards of the original and the
thus modified MDP Mer := 〈S, A, p, r̃〉 under some fixed policy π can be upper
bounded by∣∣ρπ(M)− ρπ(Mer)∣∣ =

=
∣∣∣∣ ∑

s∈S

µπ(s) r(s)−
∑
s∈S

µπ(s) r̃(s)
∣∣∣∣ =

∣∣∣∣ k∑
j=1

∑
s∈Sj

µπ(s)
(
r(s)− 1

|Sj |
∑

s′∈Sj

r(s′)
)∣∣∣∣

=
∣∣∣∣ k∑

j=1

∑
s∈Sj

µπ(s)
(

1
|Sj |

∑
s′∈Sj

(
r(s)− r(s′)

))∣∣∣∣ <

k∑
j=1

∑
s∈Sj

µπ(s)
(

1
|Sj |

∑
s′∈Sj

ε

cr

)
=

∑
s∈S

µπ(s)
ε

cr
=

ε

cr
. (3)

Now we also redefine the transition probabilities for s ∈ Sj and a ∈ A to be

p̃a(s, s′) :=
1
|Sj |

∑
s′′∈Sj

pa(s′′, s′).

It is easily checked that the pa(s, ·) are indeed probability distributions for all
s ∈ S. Considering any policy π, for each s ∈ Sj ,

∑
s′∈S

∣∣p(s, s′)− p̃(s, s′)
∣∣ =

∑
s′∈S

∣∣∣p(s, s′)− 1
|Sj |

∑
s′′∈Sj

p(s′′, s′)
∣∣∣

=
∑
s′∈S

∣∣∣ 1
|Sj |

∑
s′′∈Sj

(
p(s, s′)− p(s′′, s′)

)∣∣∣ ≤ ∑
s′∈S

1
|Sj |

∑
s′′∈Sj

∣∣p(s, s′)− p(s′′, s′)
∣∣

=
1
|Sj |

∑
s′′∈Sj

∑
s′∈S

∣∣p(s, s′)− p(s′′, s′)
∣∣ <

1
|Sj |

∑
s′′∈Sj

ε

cp
=

ε

cp
, (4)

again using that states s, s′′ in the same block have distance dv(s, s′′) < ε. As
rewards are upper bounded by 1, Theorem 3 and (4) give for the difference of
the average rewards of Mer and M̃ := 〈S, A, p̃, r̃〉 under policy π (with respective
stationary distributions µπ and µ̃π),

∣∣ρπ(Mer)− ρπ(M̃)
∣∣ =

∣∣∣∣ ∑
s∈S

µπ(s) r̃(s)−
∑
s∈S

µ̃π(s) r̃(s)
∣∣∣∣ =

=
∣∣∣∣ ∑

s∈S

(
µπ(s)− µ̃π(s)

)
r̃(s)

∣∣∣∣ ≤ ∑
s∈S

∣∣µπ(s)− µ̃π(s)
∣∣ r̃(s)

≤
∑
s∈S

∣∣µπ(s)− µ̃π(s)
∣∣ =

∥∥µπ − µ̃π

∥∥
1

< (κMπ − 1)
ε

cp
.



Combining this with (3) yields∣∣ρπ(M)− ρπ(M̃)
∣∣ ≤ ∣∣ρπ(M)− ρπ(Mer)∣∣ +

∣∣ρπ(Mer)− ρπ(M̃)
∣∣

<
ε

cr
+ (κMπ − 1)

ε

cp
. (5)

So far, π has been an arbitrary policy on M. Now we fix π to be a policy on M̂
and claim that ρπe(M̃) = ρπ(M̂) for the extension πe of π. It is easy to see that
by definition of the rewards and transition probabilities, M̃ is a block MDP with
block set Ŝ and respective aggregated MDP M̂. In particular, r̂a(Sj) = r̃a(s)
for all a ∈ A and s ∈ Sj , so that by Lemma 1

ρπ(M̂) =
∑

Sj∈bS
µ̂π(Sj) r̂(Sj) =

∑
Sj∈bS

∑
s∈Sj

µ̃πe(s) r̃(s) =
∑
s∈S

µ̃πe(s) r̃(s) = ρπe(M̃),

which together with (5) proves the theorem. ut

Corollary 1. Let π∗ be an optimal policy on an MDP M with optimal average
reward ρ∗ := ρπ∗(M), and let π̂∗ be an optimal policy with optimal average
reward ρ̂∗ := ρbπ∗(M̂) on an ε-aggregation M̂ of M with respect to dv. Then

(i) |ρ∗ − ρ̂∗| <

(
1
cr

+
κM − 1

cp

)
ε,

(ii) ρ∗ < ρbπ∗e(M) +
(

2
cr

+
2(κM − 1)

cp

)
ε,

where κM := maxπ κMπ .

Proof. First note that the extension π̂∗e of π̂∗ to the block MDP M̃ (as defined
in the proof of Theorem 2) is optimal on M̃ with reward ρ̂∗. This follows from
Theorem 1 and the fact that ρπe(M̃) = ρπ(M̂) (cf. proof of Theorem 2). Now
if ρ∗ > ρ̂∗, then by optimality of π̂∗e on M̃,

ρπ∗(M) = ρ∗ > ρ̂∗ = ρbπ∗e(M̃) ≥ ρπ∗(M̃),

so that by (5),

|ρ∗ − ρ̂∗| ≤
∣∣ρπ∗(M)− ρπ∗(M̃)

∣∣ <
ε

cr
+ (κπ∗ − 1)

ε

cp
. (6)

On the other hand, if ρ∗ ≤ ρ̂∗, then by optimality of π∗ on M,

ρbπ∗e(M̃) = ρ̂∗ ≥ ρ∗ = ρπ∗(M) ≥ ρbπ∗e(M),

and it follows again from (5) that

|ρ̂∗ − ρ∗| ≤
∣∣ρbπ∗e(M̃)− ρbπ∗e(M)

∣∣ <
ε

cr
+ (κbπ∗e − 1)

ε

cp
,



which together with (6) finishes the proof of (i).

Concerning (ii), note that by optimality of π̂∗e on M̃ it follows from (5) that

ρ∗ − ρbπ∗e(M) ≤ ρ∗ − ρbπ∗e(M) +
(
ρ̂∗ − ρπ∗(M̃)

)
= ρπ∗(M)− ρπ∗(M̃) + ρbπ∗e(M̃)− ρbπ∗e(M)

≤
∣∣ρπ∗(M)− ρπ∗(M̃)

∣∣ +
∣∣ρbπ∗e(M̃)− ρbπ∗e(M)

∣∣
< 2

(
ε

cr
+ (κM − 1)

ε

cp

)
. ut

Theorem 2 and Corollary 1 (i) can be seen as generalizations of the bounds
for discounted reward MDPs obtained in Theorem 5.2 of [3].

4 Adequate Similarity Metrics

Obviously, ε-aggregation with respect to dv is a rather restricted model which
will be applicable only to very special problems. In this section, we want to
develop a more general view on similarity metrics on an MDP’s state space.

4.1 Generalized Block MDPs

Definition 8. An MDP M = 〈S, A, p, r〉 is a generalized block MDP with
blocks S1, . . . , Sk, if the block set {S1, . . . , Sk} is a partition of S, and for all
s, s′ in the same block Si, all a ∈ A, and all blocks Sj there is an a′ ∈ A such
that

ra(s) = ra′(s′), and
∑

s′′∈Sj

pa(s, s′′) =
∑

s′′∈Sj

pa′(s′, s′′). (7)

With this definition, we could also consider MDPs in which each state has
an individual set of possible actions at its disposal. All results presented easily
generalize to this setting. However, for the sake of simplicity, we assume in
the following without loss of generality that within a block Si the actions in
A are labelled uniformly, such that for states s, s′ ∈ Si, (7) holds for a′ = a.
Consequently, we may define uniform policies as we have done before.

Generalized block MDPs (yet with discounted rewards) have already been
considered by Givan et al. [1] under the name of stochastic bisimulation, which
is the equivalence relation that corresponds to the partition {S1, . . . , Sk} in Def-
inition 8 (cf. also the discussion in [3]).

Note that block MDPs are also generalized block MDPs, so that most results
in this section can be considered as generalizations of the results in the previous
section.

Lemma 2. Let M = 〈S, A, p, r〉 be a generalized block MDP with block set Ŝ =
{S1, . . . , Sk} and respective aggregated MDP M̂ = 〈Ŝ, A, p̂, r̂〉. Given a policy π



on M̂ and its extended counterpart πe on M with stationary distributions µ̂π

and µπe , respectively, one has for all Sj ∈ Ŝ,

µ̂π(Sj) =
∑
s∈Sj

µπe(s).

Proof. As proof of Lemma 1. ut

Theorem 4. On generalized block MDPs there is always a uniform policy which
gives optimal average return.

Proof. Let M = 〈S, A, p, r〉 be a generalized block MDP with block set Ŝ =
{S1, . . . , Sk}. It is a well-known fact (cf. e.g. [7]) that a policy on an ergodic
MDP is optimal if it solves the Bellman equations, that is, if there is ρ∗ and a
value function v : S → R such that for all s ∈ S,

v(s) + ρ∗ = max
a∈A

(
ra(s) +

∑
s′∈S

pa(s, s′) v(s′)
)
. (8)

Thus, an optimal policy π̂∗ on the aggregated MDP M̂ = 〈Ŝ, A, p̂, r̂〉 solves for
all Si ∈ Ŝ,

v̂(Si) + ρ̂∗ = max
a∈A

(
r̂a(Si) +

∑
Sj∈bS

p̂a(Si, Sj) v̂(Sj)
)

= r̂bπ∗(Si)
(Si) +

∑
Sj∈bS

p̂bπ∗(Si)
(Si, Sj) v̂(Sj). (9)

However, setting v(s) := v(Sj) for s ∈ Sj , it follows from (9) that the Bellman
equations (8) hold for the extension π̂∗e of π̂∗ to M for all s ∈ S, which means
that π̂∗e is optimal on M. ut

4.2 Adequate Similarity Metrics

The key idea an adequate similarity metric shall grasp is that in similar states
there should be equivalent actions available which lead to similar states again.
Such a metric may then be used to partition the state space. As similarity in
general is not a transitive relation, not any partition will work (for more about
the problem of obtaining adequate partitions from similarity relations see e.g.
[8]). Thus before formalizing our basic idea, we start with a condition for the
utility of a given partition induced by a distance metric.

Definition 9. Given ε > 0 and a pseudometric space (S, d), we say that S′ ⊆ S
is ε-maximal, if (i) for all s, s′ ∈ S′, d(s, s′) < ε, and (ii) for all s′′ ∈ S \ S′

there is s ∈ S′ with d(s, s′′) ≥ ε.
An ε-partition Ŝ = {S1, . . . , Sk} of S with respect to a metric d is called

consistent, if each Si ∈ Ŝ is ε-maximal.



Unfortunately, existence of consistent ε-aggregations of the state space can-
not be guaranteed for each ε > 0.

Example 1. Let S = {s1, s2, s3} with d(s1, s2), d(s2, s3) < ε and d(s1, s3) ≥ ε.
Then neither of the two possible ε-partitions Ŝ1 =

{
{s1, s2}, {s3}

}
and Ŝ2 ={

{s1}, {s2, s3}
}

is consistent, because the singletons {s3} and {s1} are not ε-
maximal.

Sometimes, things are easier if (S, d) can be embedded into some larger metric
space (X, d), e.g. if S ⊂ Rn and d coincides on S with some arbitrary metric d
on Rn. In this case one may relax the condition for ε-maximality as follows:

A set S′ ⊆ S is ε-maximal, if S′ = S ∩ Uε(x) for some ε-ball Uε(x) := {y ∈
X : d(x, y) < ε} with center x ∈ X. Then an ε-partition Ŝ = {S1, . . . , Sk} is
consistent if it can be represented by non-intersecting ε-balls, that is, if

(i) there are x1, . . . , xk ∈ Rn such that Si = S ∩ Uε(xi) for i = 1, . . . , k,
(ii) Uε(xi) ∩ Uε(xj) = ∅ for i 6= j.

However, such an embedding may fail to give consistency either.

Example 2. Let S = {s1, s2, s3} consist of three points s1, s2, s3 equidistantly
distributed on a circle C := {y ∈ R2 : ‖x − y‖2 = r} with center x and radius
r. Considering the metric space (C, d) with d(y, z) := ‖y− z‖2 for y, z ∈ C, it is
easy to see that for ε =

√
2r (so that for y ∈ C, Uε(y) contains one half of C),

there is no consistent ε-partition of S. This example can easily be extended to
arbitrary n-dimensional spheres.

Also, Rn with Euclidean distance may not be favorable anyway, as it is impossible
to cover Rn with non-intersecting ε-balls with respect to Euclidean distance.
Thus, the metric with respect to ‖ · ‖∞, which evidently guarantees a consistent
ε-partition in Rn for each ε > 0, will be preferred.

Definition 10. Given an MDP M = 〈S, A, p, r〉, we say that a pseudometric
d on S is adequate to M, if d(s, s′) < ε implies that for all a ∈ A there is an
a′ ∈ A such that

(i) cr

∣∣ra(s)− ra′(s′)
∣∣ < ε,

(ii) cp

∣∣∣ ∑
s′′∈S′

pa(s, s′′)−
∑

s′′∈S′

pa′(s′, s′′)
∣∣∣ < ε for all ε-maximal S′ ⊆ S.

As in the case of generalized block MDPs we assume without loss of generality
that for states s, s′ in the same block, actions are labelled uniformly so that a′ = a
in the definition above.

Of course, one may as well define a particular partition Ŝ = {S1, . . . , Sk} of
the state space to be ε-adequate, if for all s, s′ in the same block Sj ,

(i) cr

∣∣ra(s)− ra(s′)
∣∣ < ε,

(ii’) cp

∣∣∣ ∑
s′′∈Si

pa(s, s′′)−
∑

s′′∈Si

pa(s′, s′′)
∣∣∣ < ε for all Si ∈ Ŝ.



This modified definition is similar to the definition of ε-homogeneous parti-
tions for discounted reward MDPs in [2]. The only difference is that in condition
(ii’), Even-Dar and Mansour consider arbitrary norms and sum up over all ag-
gregated states.

Further, one still may work with the metric dv defined in the previous section.
Even though the kind of state similarity which may be grasped by dv is rather
restricted, aggregating states with respect to dv for given ε > 0 evidently gives
ε-adequate partitions of the state space. By definition, dv is also an adequate
metric.

4.3 A General Upper Bound on the Loss by Aggregation

By the remarks at the end of the previous section, the following theorem can
be seen as a generalization of Lemma 3 of [2] to average reward MDPs. More
importantly, for average reward MDPs a similar result has been given by Ren
and Krogh [9].2 Our theorem is however an improvement, as the used mixing
time parameter is smaller than the respective parameter in [9].

Theorem 5. Given an MDP M = 〈S, A, p, r〉 and a consistent ε-aggregation
M̂ = 〈Ŝ, A, p̂, r̂〉 of M with respect to an adequate pseudometric d, for each
policy π on M̂ and its respective extended policy πe on M,∣∣ρπe(M)− ρπ(M̂)

∣∣ <

(
1
cr

+
(κMπ − 1)|Ŝ|

cp

)
ε.

Proof. As in the proof of Theorem 2, we start by modifying the rewards in M
slightly to be

r̃a(s) :=
1
|Sj |

∑
s′∈Sj

ra(s′) (10)

for s ∈ Sj and a ∈ A. Then the same argument can be repeated to see that for
the modified MDP Mer = 〈S, A, p, r̃〉,∣∣ρπ(M)− ρπ(Mer)∣∣ <

ε

cr
(11)

for each policy π. In the next step we want to modify the transition probabilities
in Mer so that for s, s′ in the same block and for all blocks Si ∈ Ŝ,∑

s′′∈Si

p̃a(s, s′′) =
∑

s′′∈Si

p̃a(s′, s′′). (12)

In order to attain this, we set for all s ∈ Sj , s′ ∈ Si, and all a ∈ A,

p̃a(s, s′) := pa(s, s′) +
1
|Si|

(
1
|Sj |

∑
s̄∈Sj

∑
s′′∈Si

pa(s̄, s′′)−
∑

s′′∈Si

pa(s, s′′)
)

2 Unfortunately, I haven’t been aware of this reference until after submitting the final
version of this paper to the proceedings of ALT 2007. Thus, this important reference
is missing in the published paper.



(note that the p̃a(s, ·) are indeed probability distributions for all s ∈ S), so that
for s in any block Sj ,∑

s′∈Si

p̃a(s, s′) =
∑

s′∈Si

pa(s, s′) +
1
|Sj |

∑
s̄∈Sj

∑
s′′∈Si

pa(s̄, s′′)−
∑

s′′∈Si

pa(s, s′′)

=
1
|Sj |

∑
s̄∈Sj

∑
s′′∈Si

pa(s̄, s′′), (13)

independently of s, which entails (12). As Ŝ is assumed to be a consistent ε-
aggregation with respect to an adequate metric, we have by definition of p̃ for
transition probabilities p(·, ·), p̃(·, ·) under any policy π and for s ∈ Sj , s′ ∈ Si,

|p̃(s, s′)− p(s, s′)| =
1
|Si|

·
∣∣∣∣ 1
|Sj |

∑
s̄∈Sj

∑
s′′∈Si

p(s̄, s′′)−
∑

s′′∈Si

p(s, s′′)
∣∣∣∣

≤ 1
|Si|

· 1
|Sj |

∑
s̄∈Sj

∑
s′′∈Si

∣∣∣p(s̄, s′′)− p(s, s′′)
∣∣∣ <

ε

cp|Si|
,

so that for all s ∈ S,

∑
s′∈S

∣∣p̃(s, s′)− p(s, s′)
∣∣ =

k∑
i=1

∑
s′∈Si

∣∣p̃(s, s′)− p(s, s′)
∣∣ <

k∑
i=1

ε

cp
=

|Ŝ|
cp

ε.

Thus, by Theorem 3 we have for the difference of the average rewards of Mer and
M̃ := 〈S, A, p̃, r̃〉 under some policy π (with respective stationary distributions
µπ and µ̃π),∣∣ρπ(Mer)− ρπ(M̃)

∣∣ =
∣∣∣ ∑

s∈S

(
µπ(s)− µ̃π(s)

)
r̃(s)

∣∣∣ ≤ ∑
s∈S

∣∣µπ(s)− µ̃π(s)
∣∣ r̃(s)

≤
∑
s∈S

∣∣µπ(s)− µ̃π(s)
∣∣ =

∥∥µπ − µ̃π

∥∥
1

< (κMπ − 1)
|Ŝ|
cp

ε. (14)

Now M̃ is a generalized block MDP with block set Ŝ, and by (10) and (13), its
respective aggregated MDP is precisely M̂. Analogously to the proof of Theo-
rem 2, it follows from Lemma 2 that ρπ(M̂) = ρπe(M̃) for all policies π on M̂.
Thus (11) and (14) yield∣∣ρπe(M)− ρπ(M̂)

∣∣ =
∣∣ρπe(M)− ρπe(M̃)

∣∣
≤

∣∣ρπe(M)− ρπe(Mer)∣∣ +
∣∣ρπe(Mer)− ρπe(M̃)

∣∣ <
ε

cr
+ (κMπ − 1)

|Ŝ|
cp

ε. ut

Corollary 2. Let π∗ be an optimal policy on an MDP M with optimal average
reward ρ∗, and let π̂∗ be an optimal policy with optimal average reward ρ̂∗ on a



consistent ε-aggregation M̂ of M with respect to an adequate metric. Then for
κM := maxπ κMπ ,

(i) |ρ∗ − ρ̂∗| ≤
(

1
cr

+
(κM − 1)|Ŝ|

cp

)
ε,

(ii) ρ∗ ≤ ρbπ∗e(M) +
(

2
cr

+
2(κM − 1)|Ŝ|

cp

)
ε.

Proof. Analogously to the proof of Corollary 1. ut

Corollary 2 can be seen as a generalization of Lemma 4 of [2] to average
reward MDPs. A similar result for average reward MDPs can be found in [9],
see also footnote 2.

5 Dependence on the Mixing Time

5.1 Why Bounds are Worse in the Average Reward Case

The bounds obtained for ε-aggregation in the discounted case [3, 2] are basically
of the form ε

1−γ Vmax, where Vmax is the maximal possible discounted reward.
Thus, on average one loses εVmax reward in each step. This leads to the question
whether the mixing time parameter in the obtained bounds for average reward
MDPs is really necessary. It turns out that aggregation may go terribly wrong
if mixing times are large.

Theorem 6. For each ε > 0 and each δ ∈ (0, ε/2) there is an MDP M and an
ε-aggregation M̂ of M with respect to dv, such that for some policy π on M̂,

|ρπe(M)− ρπ(M̂)| ≥ 1− δ.

Proof. Fix some ε > 0 and consider for δ ∈ (0, ε/2) the Markov chain C with
S = {s1, s2, s3} and the following nonzero transition probabilities pij := p(si, sj),

p12 = 1− δ, p13 = δ, p21 = p31 = δ/n, p22 = p33 = 1− δ/n,

where n ∈ N. Then it is easy to check that we may ε-aggregate states s1 and s2

with respect to dv so that we obtain a Markov chain Ĉ with states S1 = {s1, s2},
S2 = {s3} and transition probabilities

p̂(S1, S2) = δ/2, p̂(S2, S1) = δ/n, p̂(S1, S1) = 1− δ/2, p̂(S2, S2) = 1− δ/n.

The original chain C has stationary distribution µ =
(

δ
n+δ , n−δn

n+δ , δn
n+δ

)
, while

the stationary distribution of Ĉ is µ̂ =
(

2
n+2 , n

n+2

)
. Thus, for n → ∞ one has

µ̂ → (0, 1), while µ → (0, 1− δ, δ). Thus any MDP whose induced Markov chain
under some policy π is C satisfies the claim of the theorem, provided that π gives
reward 1 in s3 and reward 0 in s1, s2 (which is in accordance with ε-aggregation
in respect to dv). ut



Thus the results for discounted MDPs are not transferable to the average
reward case. Indeed, as shown in [10], the average reward ρπ may be expressed
via the discounted rewards ργ

π(s) as ρπ = (1 − γ)
∑

s µπ(s) ργ
π(s). This means

that the stationary distribution µπ under π plays an important role. The loss
by aggregation remains small (just as in the discounted case) as long as µ̂ ap-
proximates µ well, that is, µ̂(Si) ≈

∑
s∈Si

µ(s). The quality of approximation
however can be estimated using the mixing time as Theorem 3 shows. Note that
the mixing time in the example of Theorem 6 becomes arbitrarily large.

5.2 Alternative Perturbation Bounds

The perturbation bound for stationary distributions of Markov chains of Theo-
rem 3, which we used in the proofs of Theorems 2 and 5, may be replaced with
an arbitrary alternative perturbation bound of the form

‖µ− µ̃‖q ≤ λ ‖P − P̃‖∞.

There are several such bounds in the literature (for an overview see [11]). These
differ from each other in at most two aspects, namely (i) the used norm q (which
is either 1 or ∞) and (ii) the conditioning number λ. Obviously, bounds which
hold for the∞-norm instead of the 1-norm are impractical, as they would amount
to an additional factor |S| in the bounds of Theorems 2 and 5. Among the 1-norm
bounds the conditioning number in terms of the mixing time used by Hunter has
the advantage of being rather intuitive. However, there is little general knowledge
about the size of the mixing time (cf. [5] for results in some special cases and
also some comparison to other 1-norm conditioning numbers, which complements
the overview given in [11]). Moreover, Seneta’s ergodicity coefficient [12], which
among the 1-norm conditioning numbers considered in [11] is the smallest, is
in general also not larger than Hunter’s mixing time parameter (see [13]), so
that one may want to replace Theorem 3 with Seneta’s perturbation bound [12].
Of course, this basically gives the same aggregation bounds, only that Hunter’s
mixing time parameter is replaced with Seneta’s ergodicity coefficient.

6 Online Aggregation and Other Open Problems

Online Aggregation. Consider an agent who starts in an MDP unknown to
her and tries to aggregate states while still collecting information about the
MDP. Obviously, if she is given access to an adequate distance function, the
aggregation may be done online. For given ε > 0 the most straightforward way
to do this is to assign each newly visited state s to an existing block Si if possible
(i.e., if all states s′ in Si have distance < ε to s), or otherwise create a new block
Sj 3 s. This is an obvious sequential clustering algorithm (called e.g. BSAS in
[14]). Also, Ferns et al. [3] suggest a similar approach for offline aggregation.

Unfortunately, even if the existence of a consistent ε-partition is guaranteed
(which, as we have seen, need not be the case), in general this online aggregation



algorithm will give inconsistent ε-partitions. It is an interesting question whether
there are more prospective algorithms for online aggregation.

More generally, a related open question is whether any online regret bounds
are achievable for a combination of a suitable online aggregation algorithm with
an online reinforcement learning algorithm (such as e.g. UCRL [15]). As it is of
course hard to choose an appropriate ε in advance without having any informa-
tion about the MDP at hand, one would need a mechanism which adapts the
aggregation parameter ε to the MDP.

It may be relevant that generally, optimal aggregation is hard even if the
MDP is known (cf. [2]). Although Even-Dar and Mansour consider discounted
MDPs, their results hold generally, as the question is to find for given ε > 0 a
minimal ε-adequate aggregation (see the modification of Definition 10).

Similarity of Actions. We have concentrated on MDPs with large state spaces.
It is an interesting question whether an analogous approach will work for a
similarity metric on actions, and in particular how the two approaches may be
combined.

Relaxing Similarity. In many real-world problems one would want to relax
the given similarity conditions. In particular, the idea that similar states shall
lead to similar states under equivalent actions may not mean that states s, s′

with d(s, s′) < ε will lead to states whose distance is < ε as well. Rather one
may e.g. demand that for some constant c > 1 the distance will be < cε. Of
course, under this generalized assumption no aggregation in the sense of a strict
partition of the state space is possible anymore. Thus in order to deal with this
setting, new methods will have to be developed.
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