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ABSTRACT. In the stochastic multi-armed bandit problem we consider
a modification of the UCB algorithm of Auer et al. [4]. For this modified
algorithm we give an improved bound on the regret with respect to the
optimal reward. While for the original UCB algorithm the regret in K-
armed bandits after T trials is bounded by const · K log(T )

∆ , where ∆
measures the distance between a suboptimal arm and the optimal arm,
for the modified UCB algorithm we show an upper bound on the regret
of const · K log(T∆2)

∆ .

1. INTRODUCTION

In the stochastic multi-armed bandit problem, a learner has to choose
in trials t = 1, 2, . . . an arm from a given set A of K := |A| arms. In
each trial t the learner obtains random reward ri,t ∈ [0, 1] for choosing
arm i. It is assumed that for each arm i the random rewards ri,t are inde-
pendent and identically distributed random variables with mean ri which is
unknown to the learner. Further, it is assumed that the rewards ri,t and rj,t′

for distinct arms i, j are independent for all i 6= j ∈ A and all t, t′ ∈ N.
The learner’s aim is to compete with the arm giving highest mean reward
r∗ := maxi∈A ri.

When the learner has played each arm at least once, he faces the so-called
exploration vs. exploitation dilemma: Shall he stick to an arm that gave high
reward so far (exploitation) or rather probe other arms further (exploration)?

Date: August 2, 2011.
2000 Mathematics Subject Classification. 68T05, 62M05, 91A60.
Key words and phrases. multi-armed bandit problem, regret.
The authors would like to thank an anonymous COLT reviewer as well as Philippe

Rigollet for pointing out errors in earlier versions of this paper. The research leading to
these results has received funding from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreements n◦ 216886, the PASCAL2 Network
of Excellence, and n◦ 216529, Personal Information Navigator Adapting Through View-
ing, PinView, and the Austrian Federal Ministry of Science and Research. This publication
only reflects the authors’ views.

1



2 P. Auer and R. Ortner

When exploiting the best arm so far, the learner takes the risk that the arm
with the highest mean reward is currently underestimated. On the other
hand, exploration may simply waste time with playing suboptimal arms.
The multi-armed bandit problem is considered to be the simplest instance
of this dilemma, that also appears in more general reinforcement learning
problems such as learning in Markov decision processes [11]. As the multi-
armed bandit and its variants also have applications as diverse as routing
in networks, experiment design, pricing, and placing ads on webpages, to
name a few (for references and further applications see e.g. [8]), the prob-
lem has attracted attention in areas like statistics, economics, and computer
science.

The seminal work of Lai and Robbins [9] introduced the idea of using up-
per confidence values for dealing with the exploration-exploitation dilemma
in the multi-armed bandit problem. The arm with the best estimate r̂∗ so far
serves as a benchmark, and other arms are played only if the upper bound
of a suitable confidence interval is at least r̂∗. That way, within T trials
each suboptimal arm can be shown to be played at most

(
1

DKL
+ o(1)

)
log T

times in expectation, where DKL measures the distance between the reward
distributions of the optimal and the suboptimal arm by the Kullback-Leibler
divergence, and o(1) → 0 as T → ∞. This bound was also shown to be
asymptotically optimal [9].

The original algorithm suggested by Lai and Robbins considers the whole
history for computing the arm to choose. Only later, their method was sim-
plified by Agrawal [1]. Also for this latter approach the optimal asymptotic
bounds given by Lai and Robbins remain valid, yet with a larger leading
constant in some cases.

More recently, Auer et al. [4] introduced the simple, yet efficient UCB

algorithm, that is also based on the ideas of Lai and Robbins [9]. After
playing each arm once for initialization, UCB chooses at trial t the arm i
that maximizes1

r̂i +

√
2 log t

ni

,(1)

where r̂i is the average reward obtained from arm i, and ni is the number of
times arm i has been played up to trial t. The value in (1) can be interpreted
as the upper bound of a confidence interval, so that the true mean reward
of each arm i with high probability is below this upper confidence bound.

1Subsequently, log denotes the natural logarithm, while e stands for its base, i.e., Euler’s
number.
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In particular, the upper confidence value of the optimal arm will be higher
than the true optimal mean reward r∗ with high probability. Consequently,
as soon as a suboptimal arm i has been played sufficiently often so that the

length of the confidence interval
√

2 log t
ni

is small enough to guarantee that

r̂i +

√
2 log t

ni

< r∗,

arm i will not be played anymore with high probability. As it also holds that
with high probability

r̂i < ri +

√
2 log t

ni

,

arm i is not played as soon as

2

√
2 log t

ni

< r∗ − ri,

that is, as soon as arm i has been played⌈
8 log t

(r∗ − ri)2

⌉
times. This informal argument can be made stringent to show that each
suboptimal arm i in expectation will not be played more often than

(2) const · log T

∆2
i

times within T trials, where ∆i := r∗ − ri is the distance between the op-
timal mean reward and ri. Unlike the bounds of Lai and Robbins [9] and
Agrawal [1] this bound holds uniformly over time, and not only asymptoti-
cally.

1.1. Comparison to the nonstochastic setting. Beside the number of times
a suboptimal arm is chosen, another common measure for the quality of a
bandit algorithm is the regret the algorithm suffers with respect to the op-
timal arm. That is, we define the (expected) regret of an algorithm after T
trials as

r∗T −
∑
i∈A

ri E [Ni] ,

where Ni denotes the number of times the algorithm chooses arm i within
the first T trials. In view of (2), the expected regret of UCB after T trials
can be upper bounded by

(3)
∑

i:ri<r∗

const · log T

∆i

,
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as choosing arm i once suffers an expected regret of ∆i with respect to r∗.
In the different setting of nonstochastic bandits [5], the learner has to

deal with arbitrary reward sequences that for example may be chosen by an
adversary. For the setting where the learner competes with the best arm,
Auer et al. [5] gave the algorithm Exp4 whose regret with respect to the
best arm is of order

√
KT log K.

When comparing the two different bounds for the stochastic and the non-
stochastic bandit, it strikes odd that when choosing

∆i = ∆ =

√
K log K

T

for all suboptimal arms i in the stochastic setting, the upper bound on the
regret of (3) gives

log T√
log K

√
KT.

This is worse than the bound in the nonstochastic setting, so that one may
conclude that the bounds in the stochastic setting are improvable. Recently,
this has been confirmed by an upper bound of order

√
KT for the algorithm

MOSS [2] in the stochastic setting.
Further, this is consistent with the lower bounds on the regret derived by

Mannor and Tsitsiklis [10]. For the case where all arms except the optimal
arm have the same mean reward (so that all distances ∆i coincide as above),
the regret is lower bounded by

const ·K ·
log
(

T∆2

K

)
∆

.

In this paper we present a modification of the UCB algorithm, for which
we prove an upper bound on the regret of∑

i:ri<r∗

const · log(T∆2
i )

∆i

.

Compared to the regret bound for the original UCB algorithm, this bound
gives an improvement in particular for arms whose reward is close to the
optimum.

2. UCB IMPROVED

We first consider the simpler case when the learner knows the horizon T .
The unknown horizon case is dealt with in Section 4 below. We first note
that if the learner had access to the values ∆i, one could directly modify the
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Input: A set of arms A, the horizon T .
Initialization: Set ∆̃0 := 1, and B0 := A.
For rounds m = 0, 1, 2, . . . ,

⌊
1
2
log2

T
e

⌋
do:

Arm selection:
If |Bm| > 1, choose each arm in Bm until the total
number of times it has been chosen is nm :=

⌈
2 log(T ∆̃2

m)

∆̃2
m

⌉
.

Otherwise choose the single arm in Bm until step T is
reached.

Arm elimination:
Delete all arms i from Bm for which{

r̂i +
√

log(T ∆̃2
m)

2nm

}
< maxj∈B

{
r̂j −

√
log(T ∆̃2

m)
2nm

}
in order to obtain Bm+1. Here r̂j is the average reward
obtained from arm j.

Reset ∆̃m:
Set ∆̃m+1 := ∆̃m

2
.

FIGURE 1. The improved UCB algorithm.

confidence intervals of UCB as given in (1) to
√

2 log(t∆2
i )

ni
, and the proof of

the claimed regret bound would be straightforward.
However, since the ∆i are unknown to the learner, the modified algorithm

shown in Figure 1 guesses the values ∆i by a value ∆̃, which is initialized
to 1 and halved each time the confidence intervals become shorter than ∆̃.
Note that compared to the original UCB algorithm the confidence intervals
are shorter, in particular for arms with high estimated reward. Unlike the
original UCB algorithm, our modification eliminates arms that perform bad.
As the analysis will show, each suboptimal arm is eliminated as soon as
∆̃ < ∆i

2
, provided that the confidence intervals hold. Similar arm elimina-

tion algorithms were already proposed in [6]. However, the analysis of [6]
concentrated on PAC bounds for identifying an optimal arm instead of re-
gret bounds as in our case.

3. ONLINE REGRET BOUNDS FOR THE IMPROVED UCB ALGORITHM

Now we show the following improved bound on the expected regret.
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Theorem 3.1. The total expected regret of the improved UCB algorithm up
to trial T is upper bounded by∑

i∈A:∆i>λ

(
∆i +

32 log(T∆2
i )

∆i

+
96

∆i

)
+

∑
i∈A:0<∆i≤λ

64

λ
+ max

i∈A:∆i≤λ
∆iT

for all λ ≥
√

e
T

.

Remark 3.2. It is easy to see that the logarithmic term is the main term for
suitable λ. For example, setting λ :=

√
e
T

, the term maxi∈A:∆i≤λ ∆iT is
trivially bounded by

√
eT , which is ≤ e

∆i
for ∆i ≤ λ.

Remark 3.3. For λ ≈
√

K log K
T

the terms K log(Tλ2)
λ

and λT of the bound
in Theorem 3.1 coincide apart from a factor of log log K. The regret in this
case is bounded according to Theorem 3.1 by

√
KT · log(K log K)√

log K
,

which apart from the factor log K in the logarithm corresponds to the bound
in the nonstochastic setting. Still, there is room for further improvement as
the already mentioned bound of

√
KT for the MOSS algorithm shows [2].

Proof of Theorem 3.1: In the following we use ∗ to indicate an arbitrary
optimal arm. Further, for each suboptimal arm i let mi := min{m | ∆̃m <
∆i

2
} be the first round in which ∆̃m < ∆i

2
. Note that by definition of ∆̃m

and mi we have

(4) 2mi =
1

∆̃mi

≤ 4

∆i

<
1

∆̃mi+1

= 2mi+1.

We consider suboptimal arms in A′ := {i ∈ A |∆i > λ} for some fixed
λ ≥

√
e
T

, and analyze the regret in the following cases:

Case (a): Some suboptimal arm i is not eliminated in round mi (or be-
fore) with an optimal arm ∗ ∈ Bmi

.

Let us consider an arbitrary suboptimal arm i. First note that if

(5) r̂i ≤ ri +

√
log(T ∆̃2

m)

2nm

and

(6) r̂∗ ≥ r∗ −

√
log(T ∆̃2

m)

2nm
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hold for m = mi, then under the assumption that ∗, i ∈ Bmi
arm i will be

eliminated in round mi. Indeed, in the elimination phase of round mi we

have by (4) that

√
log(T ∆̃2

mi
)

2nmi
≤ ∆̃mi

2
= ∆̃mi+1 < ∆i

4
, so that by (5) and (6)

r̂i +

√
log(T ∆̃2

mi
)

2nmi
≤ ri + 2

√
log(T ∆̃2

mi
)

2nmi

< ri + ∆i − 2

√
log(T ∆̃2

mi
)

2nmi
= r∗ − 2

√
log(T ∆̃2

mi
)

2nmi

≤ r̂∗ −
√

log(T ∆̃2
mi

)

2nmi
,

and arm i is eliminated as claimed. Now by Chernoff-Hoeffding bounds [7]
for each m = 0, 1, 2, . . .

P

r̂i > ri +

√
log(T ∆̃2

m)

2nm

 ≤ 1

T ∆̃2
m

,(7)

and

P

r̂∗ < r∗ −

√
log(T ∆̃2

m)

2nm

 ≤ 1

T ∆̃2
m

,(8)

so that the probability that a suboptimal arm i is not eliminated in round mi

(or before) is bounded by 2
T ∆̃2

mi

. Summing up over all arms in A′ and bound-

ing the regret for each arm i trivially by T∆i we obtain by (4) a contribution
of ∑

i∈A′

2∆i

∆̃2
mi

≤
∑
i∈A′

8

∆̃mi

≤
∑
i∈A′

32

∆i

to the expected regret.

Case (b): For each suboptimal arm i: either i is eliminated in round mi

(or before) or there is no optimal arm ∗ in Bmi
.

Case (b1): If an optimal arm ∗ ∈ Bmi
for all arms i in A′, then each arm

i in A′ is eliminated in round mi (or before) and consequently played not
more often than

(9) nmi
=

⌈
2 log(T ∆̃2

mi
)

∆̃2
mi

⌉
≤

⌈
32 log(T

∆2
i

4
)

∆2
i

⌉
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times, giving a contribution of

∑
i∈A′

∆i

⌈
32 log(T

∆2
i

4
)

∆2
i

⌉
<
∑
i∈A′

(
∆i +

32 log(T∆2
i )

∆i

)
to the expected regret.

Case (b2): Now let us consider the case that the last remaining optimal
arm ∗ is eliminated by some suboptimal arm i in A′′ := {i ∈ A|∆i > 0} in
some round m∗. First note that if (5) and (6) hold in round m = m∗, then
the optimal arm will not be eliminated by arm i in this round. Indeed, this
would only happen if

r̂i −
√

log(T ∆̃2
m∗ )

2nm∗
> r̂∗ +

√
log(T ∆̃2

m∗ )

2nm∗
,

which however leads by (5) and (6) to the contradiction ri > r∗. Conse-
quently, by (7) and (8) the probability that ∗ is eliminated by a fixed subop-
timal arm i in round m∗ is upper bounded by 2

T ∆̃2
m∗

.
Now if ∗ is eliminated by arm i in round m∗, then ∗ ∈ Bmj

for all j with
mj < m∗. Hence by assumption of case (b), all arms j with mj < m∗ were
eliminated in round mj (or before). Consequently, ∗ can only be eliminated
in round m∗ by an arm i with mi ≥ m∗. Further, the maximal regret per
step after eliminating ∗ is the maximal ∆j among the remaining arms j with
mj ≥ m∗. Let mλ := min{m | ∆̃m < λ

2
}. Then, taking into account the

error probability for elimination of ∗ by some arm in A′′, the contribution to
the expected regret in the considered case is upper bounded by

maxj∈A′ mj∑
m∗=0

∑
i∈A′′: mi≥m∗

2

T ∆̃2
m∗

· T max
j∈A′′:mj≥m∗

∆j

≤
maxj∈A′ mj∑

m∗=0

∑
i∈A′′: mi≥m∗

2

∆̃2
m∗

· 4∆̃m∗

≤
∑
i∈A′′

min{mi,mλ}∑
m∗=0

8

∆̃m∗

=
∑
i∈A′′

min{mi,mλ}∑
m∗=0

8

2−m∗

<
∑
i∈A′

8 · 2mi+1 +
∑

i∈A′′\A′

8 · 2mλ+1

≤
∑
i∈A′

8 · 8

∆i

+
∑

i∈A′′\A′

8 · 8

λ
=
∑
i∈A′

64

∆i

+
∑

i∈A′′\A′

64

λ
.
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Finally, summing up the individual contributions to the expected regret of
the considered cases, and taking into account suboptimal arms not in A′

gives the claimed bound. �

4. WHEN THE HORIZON IS UNKNOWN

4.1. Algorithm. When T is unknown, the learner also has to guess T .
Thus, we start the algorithm with T̃0 = 2 and increase T̃ after reaching
T̃ steps by setting T̃`+1 := T̃ 2

` , so that T̃` = 22` .

4.2. Analysis. Fix some λ ≥
√

e
T

and assume that T > 2. For arms i with
∆i ≤ λ we bound the regret by T∆i + 64

λ
as in Theorem 3.1. Thus let us

consider the regret for an arbitrary arm i in A′ = {i ∈ A |∆i > λ}.

Let `i be the minimal ` with T̃`∆
2
i ≥ e, so that

(10) 22`i−1

= T̃`i−1 <
e

∆2
i

≤ T̃`i
= 22`i .

Then the regret with respect to arm i before period `i is bounded according
to Theorem 3.1, Remark 3.2, and (10) by

`i−1∑
`=0

(
max

j∈A′:∆j≤
√

e/T̃`

∆jT̃` +
64√

e

√
T̃`

)

≤
`i−1∑
`=0

(√
e

T̃`

· T̃` +
64√

e

√
T̃`

)
=
(√

e + 64√
e

) `i−1∑
`=0

√
T̃`

=
(√

e + 64√
e

) `i−1∑
`=0

22`−1

< 2
(√

e + 64√
e

)
· 22`i−2

≤ 2
(√

e + 64√
e

)√
T̃`i−1 <

2(e + 64)

∆i

<
134

∆i

.(11)

On the other hand, in periods ` ≥ `i the expected regret with respect to
arm i is upper bounded according to Theorem 3.1 by(

∆i +
32 log(T̃`∆

2
i )

∆i

+
96

∆i

)
≤ 129 log(T̃`∆

2
i )

∆i

.
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Summing up over all these periods ` ≥ `i until the horizon T is reached in
period 2 ≤ L ≤ log2 log2 T gives

L∑
`=`i

129 log(T̃`∆
2
i )

∆i

≤ 129

∆i

L∑
`=`i

log(22`

∆2
i )

≤ 129

∆i

(
L log(∆2

i ) + (log 2)
L∑

`=0

2`

)

<
129

∆i

(
L log(∆2

i ) + 2L+1 log 2
)

≤ 129

∆i

(
L log(∆2

i ) + 2 log T
)

≤ 258 log(T∆2
i )

∆i

.

Taking into account the periods before `i according to (11) and summing up
over all arms in A′ gives the following regret bound for the case when the
horizon is unknown.

Theorem 4.1. The total expected regret for the algorithm described in Sub-
section 4.1 is upper bounded by∑

i∈A:∆i>λ

(
258 log(T∆2

i )

∆i

+
134

∆i

)
+

∑
i∈A:0<∆i≤λ

64

λ
+ max

i∈A:∆i≤λ
∆iT.

for all λ ≥
√

e
T

.

5. CONCLUSION

We were able to improve on the regret bounds of the original UCB al-
gorithm concerning the dependency on T for small ∆i. Still, the depen-
dency on the number of arms is not completely satisfactory and requires
further investigation. Recently, another attempt to modify UCB in order
to obtain improved bounds [2] gave logarithmic regret bounds of order
K
∑

i:ri<r∗
log(T∆2

i /K)

∆i
. The authors of [2] conjecture that the additional

factor K in the bound for their algorithm MOSS (when compared to our
bound) is an artefact of their proof that one should be able to remove by im-
proved analysis. Of course, generally our algorithm as well as MOSS would
benefit from taking into account also the empirical variance for each arm.
For modifications of the original UCB algorithm this has been demonstrated
in [3].



Improved Regret Bounds for the Stochastic Multi-armed Bandit Problem 11

REFERENCES

[1] Rajeev Agrawal. Sample mean based index policies with O(log n) regret for the
multi-armed bandit problem. Adv. in Appl. Probab., 27(4):1054–1078, 1995.
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