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Abstract

Given a unichain Markov reward process (MRP), we provide an explicit ex-
pression for the bias values in terms of mean first passage times. This result
implies a generalization of known Markov chain perturbation bounds for the
stationary distribution to the case where the perturbed chain is not irre-
ducible. It further yields an improved perturbation bound in 1-norm. As a
special case, Kemeny’s constant can be interpreted as the translated bias in
an MRP with constant reward —1, which offers an intuitive explanation why
it is a constant.
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1. Preliminaries

1.1. Markov reward processes

Consider a Markov chain over a finite state space S with states 1,2,..., N
and transition probabilities p;; (1 < 7,7 < N). We assume in what follows
that the Markov chain is unichain, that is, it consists of a single recurrent class
and a possibly empty set of transient states. Equipping the Markov chain
with a reward function r : S — R yields a Markov reward process (MRP),
cf. Section 8.2 of [1] for the following facts. Usually, it is assumed that the
reward! r; in each state 7 is the mean of some fixed reward distribution. The

IFor functions f : S — R we write in the following short f; instead of f(i).
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average reward p in the MRP is then defined as

= lim —ZE [rs,|S1 =1,

T—o0 1’

where S; is a random variable for the state at step t. In the assumed case of
a unichain MRP the value p is independent of the initial state ¢. In fact, p
can be written in terms of the stationary distribution u as

N
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noting that a unchain Markov chain has a unqiue stationary distribution p
with p; = 0 for transient states 7.

1.2. The bias

While p is the average reward in the limit, the actual collected rewards
will differ depending on the initial state. This is made precise by the notion
of bias, which for each state ¢ is defined as

o0

Ai:E{Z(m—p)‘Sl:z} (1)

t=1

in MRPs with underlying aperiodic chain, while in general one sets

71520—21@{2 rst—p)‘slzz'}. 2)

By definition, the difference of two bias values \; —\; quantifies the advantage
in accumulated reward when starting in state ¢ over starting in state j.

Example 1. Assume that all states © have the same mean reward r; = r.
Then the average reward p = r and p is attained from the first step, indepen-
dent of the initial state. Accordingly, the difference of any two bias values
Ai — Aj has to be 0. Indeed, the bias is 0 for all states.

The bias values of an MRP are a solution of the Poisson equation, that

is, for all 4,
N

p+>\i:7‘i+zpij)\j~ (3)

j=1



The bias values ); in addition satisfy >, u;A; = 0, which can be achieved for
any solution of (3) by adding a suitable vector with identical entries. On the
other hand, any respective translation A, := \; + ¢ of the bias values \; still
fulfills the Poisson equation.

1.3. Mean first passage times

The mean passage time 7;; (1 # j) is defined as the expected time it takes
to first visit j when starting in ¢. Further, the mean return time 7; is the
first time ¢ is revisited again when starting in 7. It is well-known [2] that in
irreducible Markov chains, for 1 <14,7 < N

Tij = 1+Zpik7k:j, and (4)
K
1
Hi

In unichain Markov chains 7;; can be infinite for transient states j. How-
ever, all 7;; are finite for recurrent states j and for these (4) and (5) still
hold.

2. Main result

Our main result gives an explicit expression for the bias values in terms
of the mean first passage times of an MRP.

M= =) T

J#i

Theorem 2. The values

satisfy the Poisson equation (3).

Proof. Inserting the defined values A} in the right hand side of the the Poisson
equation (3), we obtain, using (4) and (5),

Ti+sz‘j/\;~ = Ti—ZpijZMszijk
J

J k#j

= 1 — ZpijZMkrijk+ZpiijTj Tjj
j k J

= r;— Zukm sz'j Tjk +Zpij s
k J J

= r;— Zuka(Tik — 1+ pix Tkk) + sz‘j Ty
- ,

J
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= fri—Zukrknk—i—z,uk?’k—Z/ﬁkrkpikﬂek-i-zpijrj
k k k J

= 7 F N = T T Z,Ukrk - Zrkpik + ZpijTj
k k J
= A+tp
which concludes the proof. O

In order to obtain the actual bias values A; from the A, defined in Theo-
rem 2, these have to be translated, cf. the remark after (3).

3. Implications

While Theorem 2 is quite simple, it has some interesting implications
discussed in the following.

3.1. Bias span

A known connection between the bias and transition times is the follow-
ing. We define the diameter D := max;.; 7;; to be the maximal mean first
passage time between two states. Then for rewards bounded in [0, 1] the bias
span span(\) is upper bounded as

span(\) := max\; —min \; < D. (6)

This observation has been made in the more general context of Markov de-
cision processes (MDPs), see [3]. Theorem 2 makes the connection between
bias and transition times precise. Note that (6) is a straightforward conse-
quence of Theorem 2.

3.2. Markov chain perturbation
Let us consider a Markov chain with transition matrix P = (p;)};_; and

a perturbed chain with transition matrix P = (Pij) f?fj:l. Perturbation bounds
for the stationary distribution provide inequalities of the form

ln = all, < &P~ Pl

for so-called condition numbers k (i.e., parameters of the unperturbed chain),
most commonly for p = 1,00 and ¢ = oo, cf. [4] for an overview. The
condition numbers of the following two bounds involve mean first passage
times and are closely related to the bias values of Theorem 2.
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Theorem 3 (Cho& Meyer [5]). Let P, P be the transition matrices of two
wrreducible Markov chains with stationary distributions p and ji. Then

Hi =
i — i < E'IEJQiji'”P—PHoo-

The condition number of the following bound uses Kemeny’s constant n,

defined as
n-="mn = Zﬂj%j-
J#
It can be shown that 7; is indeed independent of i (cf. also next section
below). Note that 7; coincides with A, when all rewards are —1.

Theorem 4 (Hunter [6]). Let P, P be the transition matrices of two irre-
ducible Markov chains with stationary distributions p and . Then

~ n ~
I —pll < §'|’P—P”oo~

The bounds of Theorems 3 and 4 have been shown for irreducible Markov
chains. In the more general setting of MDPs, perturbation bounds are known
that hold more generally in structures that need not be irreducible [7]. The
respective condition number is the diameter, which is larger than the condi-
tion numbers used in Theorems 3 and 4. However, the diameter only serves
as an upper bound on the bias span as in (6). Accordingly, with the result
of Theorem 2, we can obtain perturbation bounds which are not only more
general but also sharper.

Let us first restate the perturbation bound of [7] for the case of MRPs, a
proof is given in the appendix.?

Theorem 5 (Ortner et al. [7]). Consider a unichain MRP with transition
matriz P and another MRP with the same reward function r but a (possibly
not irreducible) perturbed matriz P. Then, independent of the initial state,
the difference of the average rewards p, p of the two MRPs is upper bounded
as

p—l < L-span() - | P = P

2The proof of the original bound is contained in an unpublished appendix of [8]. This
bound is stated in a very general context when the state spaces of the original and the
perturbed MDP need not coincide and also the reward function may be perturbed. For
the case of two MDPs with the same state space, the proof has been restated in [8].



Theorem 5 easily implies Theorems 3 and 4, but now these hold more
generally for the case when the original Markov chain is unichain, and there
are no conditions on the perturbed chain.

Proof of Theorem 3 from Theorem 5. We fix an initial state and note that
and p depend on this initial state in the following. Set the reward function
in Theorem 5 to be r; =1 and r; = 0 for all j # . Then by definition of \},

; 0 for j =1,
A= { —piTy; for j #14, @)
so that
span(\') = p; max ;.
J#i
By Theorems 5 and 2,
s — ful = lp—p| < gspan(A) - [|P = P,
= 1span(\) - ||P — P||w,
= Llpymax7i - ||P — Plleo,
3 Hi THaXT; I |

which is precisely the bound of Theorem 3 and holds independent of the
chosen initial state. O

Proof of Theorem 4 from Theorem 5. Again we fix an initial state on which
it and p depend in the following. We define a reward function

it >

e { 0 otherwise. (8)
Then the difference of the average rewards p, p of the original and the per-
turbed MRP is the total variation distance between p and i, which is known

to be 1| — fi||1. Therefore, we get by Theorems 5, independent of the initial
state,

=l = lp—p| < gspan(A) - [P — Pllw. (9)
For span(\) we have by Theorem 2,

span()\) = span()\) = max Z [ T;; — min Z [Tij (10)

LA LA

My =g

< max Y pym; < max Y T =,
LA LA
Mg
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which finishes the proof. O

Looking at the proofs, we see that while we precisely obtain the bound
of Theorem 3, the bound of Theorem 4 is a bit loose when compared to the
bound implied by Theorems 5 and 2. The following corollary to Theorem 5
summarizes our findings and presents a respective improved bound on ||y —

fill1.

Corollary 6. Consider a unichain Markov chain with transition matriz P
and stationary distribution u, and a perturbed Markov chain with transition
matriz P, which may be not irreducible. Then independent of the initial state,
the stationary distribution ' of the perturbed chain satisfies

s — 1] < % jggm-llP—Pllw and
o —all < %'Agff;?fm{m?x > i — min > Mﬂz’j} P = Pl

jeA\{i} JjeA\{i}

Proof. The first statement is just Theorem 3 generalized, which we have
shown before. The second statement follows from the proof of Theorem 4

above, considering the maximal possible expression on the right hand side
of (10). O

3.3. Kemeny’s constant

Our results also give another answer to the question why Kemeny’s con-
stant is a constant [2, 9, 10]. When all rewards r; are —1, then \; = ; for
all 7. As discussed in Example 1, identical rewards imply identical bias values
so that it follows that all the n; have to be identical. This not only provides
a short proof that n; = n for all 7, it also gives a simple explanation why
Kemeny’s constant is a constant: The n; are the translated bias values in an
MRP with identical rewards and hence have to be identical, too.

Appendix A. Proof of Theorem 5

We start with a result that after taking ¢ steps in the perturbed MRP
compares the accumulated rewards to the quantity ¢p.

Lemma 7. Consider a unichain MRP with transition matriz P, stationary
distribution p, and bias A, and let another MRP have the same reward func-
tion r but a perturbed transition matriz P. We take £ steps in the perturbed
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MRP and write v; for the number of wvisits in state i. Then it holds with
probability at least 1 — 0 that

fp—Zvlwn- < Lspan(A)-||P — P||o +span(\) <1+\/2€log(1/6)>, (A1)

independent of the initial state.

Proof. We first apply a translation \; := \; — 1(max; A; + min; \;) to the
bias values A;. Then

(R :m]axj\j = lspan()\) = 1span()). (A.2)

Further, the ); still satisfy the Poisson equation (3), so that

o= vr= Y (=) = u (S - %)

= Zvi <Zl5zj A — /_\i> + Zvi ’ Z (pij = Bis) M- (A.3)
i J i J
Writing S, for the state at step ¢ we obtain for the first term in (A.3)
Zvi (Zﬁij /_\j - 5\1’) = Z (Zﬁst,j 5\j - S\St)
i J t=1 J
g — — — —
= Y (s = As ) +As = s (A.4)
t=1

The sequence
Xy = E DS Aj — st
J

is a martingale difference sequence with | X;| < span()\), so that by Azuma-
Hoeffding’s inequality (e.g., Lemma 10 of [3]) with probability 1 — ¢,

¢
Z (Zﬁst,j N — 5\5t+1> < span(A)4/2¢1log(1/6). (A.5)

Hence we obtain from (A.4)

Z v; (Zﬁlj Aj— /_\i> < span(\)y/20log(1/6) + span(A). (A.6)

7
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The second term in (A.3) can be bounded by (A.2) as

Zvi : Z (pij — i) ;. < Zvi : Z [pij = Bigl - | A
i J @ J

< € ||P = Pllo - g span(h). (A7)

Combining (A.3), (A.6), and (A.7) gives the claimed

lp —

> v < fspan(d)- [P = Pl + span() (1 + \/%log(l/é)). O

Now Theorem 5 follows from Lemma 7 by dividing (A.1) by ¢, choosing

d =1/¢, and letting ¢ — oo. O
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