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Abstract

In ergodic MDPs we consider stationary distributions of policies that coincide in all
but n states, in which one of two possible actions is chosen. We give conditions and
formulas for linear dependence of the stationary distributions of n+2 such policies,
and show some results about combinations and mixtures of policies.
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1 Introduction

Definition 1 A Markov decision process (MDP) M on a (finite) set of states
S with a (finite) set of actions A available in each state ∈ S consists of

(i) an initial distribution µ0 that specifies the probability of starting in some
state in S,

(ii) the transition probabilities pa(s, s
′) that specify the probability of reaching

state s′ when choosing action a in state s, and
(iii) the payoff distributions with mean ra(s) that specify the random reward for

choosing action a in state s.

A (deterministic) policy on M is a mapping π : S → A.

Note that each policy π induces a Markov chain on M. We are interested
in MDPs, where in each of the induced Markov chains any state is reachable
from any other state.
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Definition 2 An MDP M is called ergodic, if for each policy π the Markov
chain induced by π is ergodic, i.e. if the matrix P = (pπ(i)(i, j))i,j∈S is irre-
ducible.

It is a well-known fact (cf. e.g. [1], p.130ff) that for an ergodic Markov chain
with transition matrix P there exists a unique invariant and strictly positive
distribution µ, such that independent of the initial distribution µ0 one has
µn = µ0P̄n → µ, where P̄n = 1

n

∑n
j=1 P j. Thus, given a policy π on an ergodic

MDP that induces a Markov chain with invariant distribution µ, the average
reward of that policy can be defined as

V (π) :=
∑
s∈S

µ(s)rπ(s)(s).

A policy π◦ is called optimal, if for all policies π: V (π) ≤ V (π◦). It can
be shown ([2], p.360ff) that the optimal value V (π◦) cannot be increased by
allowing time-dependent policies, as there is always a deterministic policy that
gains optimal average reward.

2 Main Theorem and Proof

Given n policies π1, π2, . . . , πn we say that another policy π is a combination
of π1, π2, . . . , πn, if for each state s one has π(s) = πi(s) for some i.

Theorem 3 Let M be an ergodic MDP and π1, π2,. . . ,πn+1 pairwise distinct
policies on M that coincide on all but n states s1, s2, . . . , sn. In these states
each policy applies one of two possible actions, i.e. we assume that for each
i and each j either πi(sj) = 0 or πi(sj) = 1. Let π be a combination of
the policies π1, π2,. . . ,πn+1. We may assume without loss of generality that
π(sj) = 1 for all j by swapping the names of the actions correspondingly. Let
µi be the stationary distribution of policy πi (i = 1, . . . , n + 1), and let Sn be
the set of permutations of the elements {1, . . . , n}. Then setting

Γk := {γ ∈ Sn+1 | γ(k) = n + 1 and πj(sγ(j)) = 0 for all j 6= k}

and for all s ∈ S

µ(s) :=

∑n+1
k=1

∑
γ∈Γk

sgn(γ) µk(s)
∏n+1

j=1
j 6=k

µj(sγ(j))∑n+1
k=1

∑
γ∈Γk

sgn(γ)
∏n+1

j=1
j 6=k

µj(sγ(j))
,

µ is the stationary distribution of π, provided that µ 6= 0.

For clarification of Theorem 3, we proceed with an example.
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Example 4 LetM be an ergodic MDP with state space S = {s1, . . . , sN} and
π000, π010, π101, π110 policies on M whose actions differ only in three states s1,
s2 and s3. The subindices of a policy correspond to the word π(s1)π(s2)π(s3),
so that e.g. π010(s1) = π010(s3) = 0 and π010(s2) = 1. Now let µ000, µ010,
µ101, and µ110 be the stationary distributions of the respective policies. As
for n = 3 the possibility of µ = 0 can be excluded (see sufficient condition
(i) of Remark 6 below), by Theorem 3 we may calculate the distributions
of all other policies that play in states s1, s2, s3 action 0 or 1, and coincide
with the above mentioned policies in all other states. In order to obtain e.g.
the stationary distribution µ111 of policy π111 in an arbitrary state s, first we
have to determine the sets Γ000, Γ010, Γ101, and Γ110. This can be done by
interpreting the subindices of our policies as rows of a matrix. In order to
obtain Γk one cancels row k and looks for all possibilities in the remaining
matrix to choose three 0s that neither share a row nor a column:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 0 1 1 0 1 1 0 1 1 0 1 1 0 1
1 1 0 1 1 0 1 1 0 1 1 0 1 1 0

Each of the matrices now corresponds to a permutation in Γk, where k cor-
responds to the cancelled row. Thus Γ000, Γ010 and Γ101 contain only a single
permutation, while Γ110 contains two. The respective permutation can be read
off each matrix as follows: note for each row one after another the position
of the chosen 0, and choose n + 1 for the cancelled row. Thus the permuta-
tion for the third matrix is (2, 1, 4, 3). Now for each of the matrices one has a
term that consists of four factors (one for each row). The factor for a row j is
µj(s

′), where s′ = s if row j was cancelled (i.e. j = k), or equals the state that
corresponds to the column of row j in which the 0 was chosen. Thus for the
third matrix above one gets µ000(s2)µ010(s1)µ101(s)µ110(s3). Finally, one has to
consider the sign for each of the terms which is the sign of the corresponding
permutation. Putting all together, normalizing the output vector and abbre-
viating ai := µ000(si), bi := µ010(si), ci := µ101(si), and di := µ110(si), one
obtains for all states si (i = 1, . . . , N)

µ111(si) =
aib1c2d3 − a1bic2d3 − a2b1cid3 + a1b3c2di − a3b1c2di

b1c2d3 − a1c2d3 − a2b1d3 + a1b3c2 − a3b1c2

.

Theorem 3 can be obtained from the following more general result where the
stationary distribution of a randomized policy is considered.

Theorem 5 Under the assumptions of Theorem 3, the stationary distribution
µ of the policy π that plays in state si (i = 1, . . . , n) action 0 with probability
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λi ∈ [0, 1] and action 1 with probability (1− λi) is given by

µ(s) =

∑n+1
k=1

∑
γ∈Γ′

k
sgn(γ) µk(s)

∏n+1
j=1
j 6=k

f(γ(j), j)∑n+1
k=1

∑
γ∈Γ′

k
sgn(γ)

∏n+1
j=1
j 6=k

f(γ(j), j)
,

provided that µ 6= 0, where Γ′
k := {γ ∈ Sn+1 | γ(k) = n + 1} and

f(i, j) :=

λi µj(si), if πj(i) = 1,

(λi − 1) µj(si), if πj(i) = 0.

Theorem 3 follows from Theorem 5 by simply setting λi = 0 for i = 1, . . . , n.

Proof of Theorem 5 Let S = {1, 2, . . . , N} and assume that si = i for
i = 1, 2, . . . , n. We denote the probabilities associated with action 0 with
pij := p0(i, j) and those of action 1 with qij := p1(i, j). Furthermore, the
probabilities in the states i = n + 1, . . . , N , where the policies π1, . . . , πn+1

coincide, are written as pij := pπk(i)(i, j) as well. Now setting

νs :=
n+1∑
k=1

∑
γ∈Γ′

k

sgn(γ) µk(s)
n+1∏
j=1
j 6=k

f(γ(j), j)

and ν := (νs)s∈S we are going to show that νPπ = ν, where Pπ is the proba-
bility matrix of the randomized policy π. Since the stationary distribution is
unique, normalization of the vector ν proves the theorem. Now

(νPπ)s =
n∑

i=1

νi

(
λipis + (1− λi)qis

)
+

N∑
i=n+1

νi pis

=
n∑

i=1

n+1∑
k=1

∑
γ∈Γ′

k

sgn(γ) µk(i)
n+1∏
j=1
j 6=k

f(γ(j), j)
(
λipis + (1− λi)qis

)

+
N∑

i=n+1

n+1∑
k=1

∑
γ∈Γ′

k

sgn(γ) µk(i)
n+1∏
j=1
j 6=k

f(γ(j), j) pis.

Since

N∑
i=n+1

µk(i) pis = µk(s)−
∑

i:πk(i)=0

µk(i) pis −
∑

i:πk(i)=1

µk(i) qis,

this gives
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(νPπ)s =
n+1∑
k=1

∑
γ∈Γ′

k

sgn(γ)
n+1∏
j=1
j 6=k

f(γ(j), j)
( n∑

i=1

µk(i)
(
λipis + (1− λi)qis

)

+µk(s)−
∑

i:πk(i)=0

µk(i) pis −
∑

i:πk(i)=1

µk(i) qis

)

= νs +
n+1∑
k=1

∑
γ∈Γ′

k

sgn(γ)
n+1∏
j=1
j 6=k

f(γ(j), j)
( ∑

i:πk(i)=0

µk(i) (λi − 1)(pis − qis)

+
∑

i:πk(i)=1

µk(i) λi(pis − qis)
)

= νs +
n+1∑
k=1

∑
γ∈Γ′

k

sgn(γ)
n+1∏
j=1
j 6=k

f(γ(j), j)
n∑

i=1

(pis − qis)f(i, k)

= νs +
n∑

i=1

(pis − qis)
n+1∑
k=1

∑
γ∈Γ′

k

sgn(γ) f(i, k)
n+1∏
j=1
j 6=k

f(γ(j), j)

Now it is easy to see that
∑n+1

k=1

∑
γ∈Γ′

k
sgn(γ) f(i, k)

∏n+1
j=1
j 6=k

f(γ(j), j) = 0: fix k

and some permutation γ ∈ Γ′
k, and let l := γ−1(i). Then there is exactly one

permutation γ′ ∈ Γ′
l, such that γ′(j) = γ(j) for j 6= k, l and γ′(k) = i. The

pairs (k, γ) and (l, γ′) correspond to the same summands

f(i, k)
n+1∏
j=1
j 6=k

f(γ(j), j) = f(i, l)
n+1∏
j=1
j 6=l

f(γ′(j), j)

– yet, since sgn(γ) = −sgn(γ′), they have different sign and cancel out each
other, which finishes the proof. 2

Remark 6 The condition µ 6= 0 in the theorems is (unfortunately) neces-
sary, as there are some degenerate cases where the formula gives 0. Choose
e.g. an MDP and policies that violate condition (iii) below, such that the sta-
tionary distribution of each policy is the uniform distribution over the states.
Then in the setting of Theorem 3, one obtains µ = 0. It is an open question
whether these “singularities” can be characterized or whether there is a more
general formula that avoids them. At the moment, only the following sufficient
conditions guaranteeing µ 6= 0 are available:

(i) n < 4,
(ii) the distributions µi are linearly independent,

(iii) the n× (n + 1) matrix
(
πj(si)

)
ij

has rank n.

While (ii) is trivial, (i) and (iii) can be verified by noting that µ(s) can be
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written as the following determinant:

µ(s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f(1, 1) f(1, 2) · · · f(1, n + 1)

f(2, 1) f(2, 2) · · · f(2, n + 1)
...

...
. . .

...

f(n, 1) f(n, 2) · · · f(n, n + 1)

µ1(s) µ2(s) · · · µn+1(s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Sometimes (iii) can be guaranteed by simply swapping names of the actions,
but there are cases where this doesn’t work.

3 Applications

3.1 Not All Combined Policies are Worse

A consequence of Theorem 3 is that given two policies π1, π2, not all combined
policies can be worse than π1 and π2. For the case where π1 and π2 differ only
in two states this is made more precise in the following proposition.

Proposition 7 Let M be an ergodic MDP. Let π00, π01, π10, π11 be four poli-
cies on M that coincide in all but two states s1, s2, in which either action 0 or
1 (according to the subindices) is chosen. We denote the average rewards of the
policies by V00, V01, V10, V11. Let α, β ∈ {0, 1} and set ¬z := 1−z. Then it can-
not be the case that both, Vαβ > V¬α,β, Vα,¬β and V¬α,¬β ≥ V¬α,β, Vα,¬β. Analo-
gously, it cannot hold that both, Vαβ < V¬α,β, Vα,¬β and V¬α,¬β ≤ V¬α,β, Vα,¬β.

Proof Let the invariant distributions of the policies π00, π01, π10, π11 be µ00 =
(ai)i∈S, µ01 = (bi)i∈S, µ10 = (ci)i∈S, µ11 = (di)i∈S. Assume without loss of
generality that α = β = 0 and V00 ≤ V11. We show that if V00 > V01, V10, then
V00 > V11, contradicting our assumption.

In the following, we write for the rewards of the policy π00 simply ri instead
of rπ00(i)(i). For the deviating rewards in state s1 under policies π10, π11 and
in state s2 under π01, π11 we write r′1 and r′2, respectively. Then we have

V00 =
∑
i∈S

airi, V01 = b2r
′
2 +

∑
i∈S\{2}

biri, V10 = c1r
′
1 +

∑
i∈S\{1}

ciri,

V11 = d1r
′
1 + d2r

′
2 +

∑
i∈S\{1,2}

diri.
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If we now assume that V00 > V01, V10, the first three equations yield

b2r
′
2 < a2r2 +

∑
i∈S\{2}

(ai − bi)ri and c1r
′
1 < a1r1 +

∑
i∈S\{1}

(ai − ci)ri, (1)

while applying Theorem 3 for n = 2 together with sufficient condition (i) of
Remark 6 to the fourth equation gives

V11 =
1

D

(
a2b1c1r

′
1 + a1b2c2r

′
2 +

∑
i∈S\{1,2}

(a2b1ci − aib1c2 + a1c2bi)ri

)
,

where D = a2b1 − b1c2 + a1c2. Substituting according to (1) then yields

V11 <
a2b1

D

(
a1r1 +

∑
i∈S\{1}

(ai − ci)ri

)
+

a1c2

D

(
a2r2 +

∑
i∈S\{2}

(ai − bi)ri

)

+
a2b1

D

∑
i∈S\{1,2}

ciri −
b1c2

D

∑
i∈S\{1,2}

airi +
a1c2

D

∑
i∈S\{1,2}

biri

=
1

D

(
a1a2b1r1 + a2b1(a2 − c2)r2 + a1a2c2r2 + a1c2(a1 − b1)r1

+(a2b1 + a1c2 − b1c2)
∑

i∈S\{1,2}
airi

)

=
a2b1 − b1c2 + a1c2

D

(
a1r1 + a2r2 +

∑
i∈S\{1,2}

airi

)
= V00. 2

Corollary 8 Let V00, V01, V10, V11 and α, β be as in Proposition 7. Then the
following implications hold:

(i) Vαβ < Vα,¬β, V¬α,β =⇒ V¬α,¬β > min(Vα,¬β, V¬α,β).
(ii) Vαβ > Vα,¬β, V¬α,β =⇒ V¬α,¬β < max(Vα,¬β, V¬α,β).
(iii) Vαβ ≤ Vα,¬β, V¬α,β =⇒ V¬α,¬β ≥ min(Vα,¬β, V¬α,β).
(iv) Vαβ ≥ Vα,¬β, V¬α,β =⇒ V¬α,¬β ≤ max(Vα,¬β, V¬α,β).
(v) Vαβ = Vα,¬β = V¬α,β =⇒ V¬α,¬β = Vαβ.
(vi) Vαβ, V¬α,¬β ≥ Vα,¬β, V¬α,β =⇒ Vαβ = Vα,¬β = V¬α,β = V¬α,¬β.

Proof (i)–(iv) are mere reformulations of Proposition 7, while (vi) is an easy
consequence. Thus let us consider (v). If V¬a,¬b were < Va,¬b = V¬a,b, then
by Proposition 7, Vab > min(V¬a,b, Va,¬b), contradicting our assumption. Since
a similar contradiction crops up if we assume that V¬a,¬b > Va,¬b = V¬a,b, it
follows that V¬a,¬b = Va,¬b = V¬a,b = Vab. 2

Actually, Proposition 7 is a special case of the following theorem.

Theorem 9 Let M be an ergodic MDP and π1, π2 be two policies on M. If
there is a combined policy that has lower average reward than π1 and π2, then
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there must be another combined policy that has higher average reward than π1

and π2.

3.1.1 Proof of Theorem 9

We show the following implication, from which the theorem follows:

(∗) If V (π1), V (π2) ≥ V (π) for each combination π of π1, π2, then V (π1) =
V (π2) = V (π) for all combinations π of π1 and π2 .

We assume without loss of generality that V (π2) ≥ V (π1). Furthermore, we
ignore all states where π1, π2 coincide. For the remaining n states we denote
the actions of π1 by 0 and those of π2 by 1. Thus any combination of π1 and
π2 can be expressed as a sequence of n elements ∈ {0, 1}, where we assume
an arbitrary order on the set of states (take e.g. the one used in the transition
matrices). We now define sets of policies or sequences, respectively, as follows:
First, let Θi be the set of policies with exactly i occurrences of 1. Then set
Π0 := Θ0 = {00 . . . 0}, and for 1 ≤ i ≤ n

Πi := {π ∈ Θi | d(π, π∗
i−1) = 1},

where d denotes the Hamming distance, and π∗
i is a (fixed) policy in Πi with

V (π∗
i ) = maxπ∈Πi

V (π). Thus, a policy is ∈ Πi if and only if it can be obtained
from π∗

i−1 by replacing a 0 with a 1.

Lemma 10 If n ≥ 2, then V (π∗
i−1) ≥ V (π∗

i ) for 1 ≤ i ≤ n.

Proof The lemma obviously holds for i = 1, since π∗
0 = 00 . . . 0 = π1 and by

assumption V (π1) ≥ V (π) for π ∈ Π1 (presupposed that n ≥ 2). Proceeding
by induction, let i > 1 and assume that V (π∗

i−2) ≥ V (π∗
i−1). By construction

of the elements in each Πj, the policies π∗
i−2, π∗

i−1 and π∗
i differ in at most two

states, i.e. the situation is as follows:

π∗
i−2 = . . . 0 . . . 0 . . .

π∗
i−1 = . . . 1 . . . 0 . . .

π∗
i = . . . 1 . . . 1 . . .

π′ = . . . 0 . . . 1 . . .

Define a policy π′ ∈ Πi−1 as indicated above. Then V (π∗
i−2) ≥ V (π∗

i−1) ≥ V (π′)
by induction assumption and optimality of π∗

i−1 in Πi−1. Applying (iv) of
Corollary 8 yields that V (π∗

i ) ≤ max(V (π∗
i−1), V (π′)) = V (π∗

i−1). 2

Since π∗
0 = 00 . . . 0 = π1 and π∗

n = 11 . . . 1 = π2, it follows from Lemma 10 that
V (π1) ≥ V (π2). Together with our initial assumption that V (π2) ≥ V (π1) this
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gives V (π1) = V (π2). Eventually, we are ready to prove (∗) by induction on
the number of states n in which the policies π1, π2 differ. For n = 1 it is trivial,
while for n = 2 there are only two combinations of π1 = π∗

0 and π2 = π∗
2. One

of them is identical to π∗
1 and hence has average return V (π1), so that the

other one must have average return V (π1) due to Corollary 8 (v).

Thus, let us assume that n > 2 and V (π1), V (π2) ≥ V (π) for each combination
π of π1, π2. Then we have already shown that the policies π∗

i and hence in
particular π∗

1 = 00 . . . 010 . . . 0 and π∗
n−1 = 11 . . . 101 . . . 1 have average reward

V (π1). Since π∗
1 and π∗

n = 11 . . . 1 = π2 are policies with average reward V (π1)
that share a common digit in some position k, we may conclude by induction
assumption that all policies with a 1 in position k yield average reward V (π1).
A similar argument applied to the policies π∗

0 = 00 . . . 0 and π∗
n−1 shows that

all policies with a 0 in position l (the position of the 0 in π∗
n−1) have average

reward V (π1) as well. Note that by construction of the sets Πi, k 6= l. Thus,
we have shown that all considered policies have average reward V (π1), except
those with a 1 in position l and a 0 in position k. However, as all policies of
the form

k l

. . . 0 . . . 0 . . .

. . . 1 . . . 0 . . .

. . . 1 . . . 1 . . .

have average reward V (π1), a final application of Corollary 8 (v) shows that
those yield average reward V (π1) as well. 2

3.2 Combining and Mixing Optimal Policies

An immediate consequence of Theorem 9 is that combinations of optimal
policies in ergodic MDPs are optimal as well.

Theorem 11 Let M be an ergodic MDP and π◦
1, π

◦
2 optimal policies on M.

Then any combination of these policies is optimal as well.

Proof If any combination of π◦
1 and π◦

2 were suboptimal, then by Theorem 9
there would be another combination of π◦

1 and π◦
2 with average reward larger

than V (π◦
1), a contradiction to the optimality of π◦

1. 2

Obviously, if two combined optimal policies are optimal, so are combinations
of an arbitrary number of optimal policies. Thus, one immediately obtains
that the set of optimal policies is closed under combination.
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Corollary 12 Let M be an ergodic MDP. A policy π is optimal on M if and
only if for each state s there is an optimal policy π◦ with π(s) = π◦(s).

Theorem 11 can be extended to mixing optimal policies, that is, our policies
are not deterministic anymore, but in each state we choose an action randomly.
Building up on Theorem 11, we can show that any mixture of optimal policies
is optimal as well.

Theorem 13 Let Π∗ be a set of deterministic optimal policies on an ergodic
MDP M. Then any policy that chooses at each visit in each state s randomly
an action a such that there is a policy π ∈ Π∗ with a = π(s), is optimal.

Proof By Theorem 8.9.3 of [2], the limit points of the state-action frequen-
cies (cf. [2], p.399) of a random policy πR as described in the theorem are
contained in the convex hull of the stationary distributions of policies in Π∗.
The optimality of πR follows immediately from the optimality of the policies
in Π∗. 2

Theorems 11 and 13 can also be obtained by more elementary means than we
have applied here. However, in spite of this and the usefulness of the results
(see below), as far as we know there is no mention of them in the literature.

3.2.1 Some Remarks

3.2.1.1 No Contexts MDPs are usually presented as a standard example
for decision processes with delayed feedback. That is, an optimal policy often
has to accept locally small rewards in present states in order to gain large
rewards later in future states. One may think that this induces some sort of
context in which actions are optimal, e.g. that choosing a locally suboptimal
action only “makes sense” in the context of heading to higher reward states.
Theorem 13 however shows that this is not the case and optimal actions are
rather optimal in any context.

3.2.1.2 An Application of Theorem 13 Consider an algorithm oper-
ating on an MDP that every now and then recalculates the optimal policy
according to its estimates of the transition probabilities and the rewards, re-
spectively. Sooner or later the estimates are good enough, so that the cal-
culated policy is indeed an optimal one. However, if there is more than one
optimal policy, it may happen that the algorithm does not stick to a sin-
gle optimal policy but starts mixing optimal policies irregularly. Theorem 13
guarantees that the average reward of such a process again is still optimal.
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3.2.1.3 Optimality is Necessary Given some policies with equal average
reward V , in general, it is not the case that a combination of these policies
again has average reward V , as the following example shows. Thus, optimality
is a necessary condition in Theorem 11.

Example 14 Let S = {s1, s2} and A = {a1, a2}. The transition probabilities
are given by

(pa1(i, j))i,j∈S = (pa2(i, j))i,j∈S =

 0 1

1 0

 ,

while the rewards are ra1(s1) = ra1(s2) = 0 and ra2(s1) = ra2(s2) = 1. Since
the transition probabilities of all policies are identical, policy (a2, a2) with an
average reward of 1 is obviously optimal. Policy (a2, a2) can be obtained as a
combination of the policies (a1, a2), and (a2, a1), which however only yield an
average reward of 1

2
.

3.2.1.4 Multichain MDPs Theorem 11 does not hold for MDPs that are
multichain as the following simple example demonstrates.

Example 15 Let S = {s1, s2} and A = {a1, a2}. The transition probabilities
are given by

(pa1(i, j))i,j∈S =

 1 0

0 1

 , (pa2(i, j))i,j∈S =

 1
2

1
2

1
2

1
2

 ,

while the rewards are ra1(s1) = ra1(s2) = 1 and ra2(s1) = ra2(s2) = 0. Then
the policies (a1, a1), (a1, a2), (a2, a1) all gain an average reward of 1 and are
optimal, while the combined policy (a2, a2) yields suboptimal average reward
0.

3.2.1.5 Infinite MDPs Under the strong assumption that there exists a
unique invariant and positive distribution for each policy, Theorems 11 and 13
also hold for MDPs with countable set of states/actions. Proofs are identical to
the case of finite MDPs (with the only difference that the induction becomes
transfinite). However, in general, countable MDPs are much harder to handle
as optimal policies need not be stationary anymore (cf. [2], p.413f).
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